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Approacn

* We believe that having knowledge of the hardware

components that compose an FPGA allow for
better firmware design.

* Being able to visualise the ressources that a code
will exploit helps to design more efficiently and
possibly with less bugs or unexpected behaviours.

e Therefore we will start from the bottom and work
our way up.



Objective

* Our goal is to understand the functioning of an
FPGA in order to program it.

* We will start by considering that the FPGA is a
black box, an electronic component that sits on a
PCB and is connected to other components, but
nothing more.

* Then, step-by-step, we will go over what composes
an FPGA an explain how it works.



| ogic (Gates,
Multiplexers, LUTs, ...



Combinatorial & Sequential
L ogic

 Combinational logic makes use of the current
state of the inputs to define the value of the output.

* Sequential logic behaves according to the current
and past values of the inputs by registering them.



Logic gates implement boolean operations on one or

| ogic (Gates

more INputs.
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Combinatorial logic



Multiplexers

Multiplexers forward one out of several inputs to a
single output according to a selection signal.

20— o e o
D1 ——
5 0 0 DO
D2 0 1 D1
D3 —— /// 1 0 D2
S[1:0] 1 1 D3

Combinatorial logic



| ookUp-Tables (LUT)

LUTs are associative memories that return predefined
output signals according to the state of the input
signals. The values that will be returned are
programmed beforehand.

D[5:0] Q[1:0] 000000 01
— 000001 00
000010 11

— 000011 11

Combinatorial logic



| atches

Latches are components that maintain a defined state and
are controlled by their inputs.

The SR flip-flop is the simplest example of this. It is an
active low SET and RESET latch.

: o IO

0 0 Forbidden
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0 1 1
R— (_) 1 1 Unchanged

J Sequential logic



Registers

Registers are latches that store “data”.

The D tlip-tflop (DFF) for example changes state only on the
rising edge of the clock. It can therefore be seen as a

sample-and-hold register.

O

CLK Q

D — — Q X T X
X ! Unchanged
CLK —p X 1 Unchanged
X 0 Unchanged
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Other components

Buffers isolate their input and output pins and allow
for high tanout of the signal.

Shift registers shift the input stream of data by a
given number of bits.

Serialisers / deserialisers transform parallel (serial)
data into serial (parallel) data.

Adders and Multipliers are dedicated components
that are optimised to perform mathematical operations.
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Delays

* Every component in the design adds delay to the
signal.
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* Thisis OK as long as you are aware of it and take it
iInto account when you design your firmware.

12



Examples

U2
U2

U1 u l

What is the behaviour of this

What is the output of
circuit ?

this circuit 7
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Examples

U2
< | U2
U1
U1
D Q D Q
Continuously inverts the output Outputs 1 if the input is 1 for two consecutive clock cycles

14



EXerclises

. Using only logic gates, write the schematic of the 4-inputs
multiplexer.

. Using D ftlip-tflops, write the schematic of a 3-bits shift register
(the output is shifted by 3 bits).

. Using D flip-tlops, write the schematic of a 4-bits deserialiser.

. Write a counter by 3 (“000”, “0117, ...) using only logic gates
and D flip-flops.

. Write the logic for an adder of two number of two bits which
yields a result on three bits.
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Solution 1
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Solution 4

O[2] O[1] O[0]
0 0 0
0 1 1
1 1 0
0] 0 1
1 0 0]
1 1 1
0 1 0
1 0 1
0] = NOT O[0]
O[1] = 0[0] NXOR 0O[1]
O[2] = O[2] XOR (O[1] OR O[2])
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Digital Signal
Processing



Digital Signal Processors

 DSPs perform tast mathematical operations on
signals and can be used to implement a wide
range of time-critical algorithms.

 We will analyse the schematic of the DSP48A1
block which is used in the Xilinx Spartan6 FPGA.

e A full documentation can be found at the following
address: http://www.xilinx.com/support/
documentation/user_guides/ug389.pdf
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DSP48A1 |

D REG

BO REG

Each input is equipped with a multiplexer
that either selects a buffered/synchronous or
an unbuffered/asynchronous version of the
signal.

A0 REG

C REG

C D
48

3
= = =

dedicated cascade

BCIN
( ) UG389_c1_03_111411
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DSP48A1

D REG

re-addersubiacter 1 NE D and B data buses then go

through an Adder/Subtracter which
} behaviour Is determined by the
opmode[6] bit.
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or the D+B signal.

C REG

C D
48

i
— \_/t/
N
<

-
opmode[6] opmode[4]

dedicated cascade

BCIN
( ) UG389_c1_03_111411

24



DSP48A1 IV

BCOUT
i
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DSP48AT
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Subtracter.

The output signal can be read
on the P port and carry bits can

DSP48AT

~inally, two multiplexers allow
for fine control of the signals
that enter the second Adder/

BCOUT M
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Why is this relevant”

* In any programming language (C, Python, etc) you would write
something similar to

P-(D+B)*A-C

which the CPU would execute after compilation. This is not the
case when designing for FPGAs.

* You need to think about what the hardware does in order to code
efficiently!

* The above code could be understood by the VHDL “"compiler”,
but it would be bad practice to use it. You wouldn't be able to
control when the signals are valid or not.
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EXerclises

By parametrising the DSP48A1, perform the following
operations:

1. R=A+B
2. R=A*B
3. R=A+B+C+D

4. R=A"B-C*D

29



Solution 1

BCOUT

M

CARRYOUT CARRYOUTF

l

PCOUT

‘ t
, T D:A:B Concatenated | Carry ’
D REG // Y1s 48 Cascade
L\
D D p;
18 Pre-Adder/Subtracter 48
n B1 REG cvo ||
BO REG N )
B W 36
' g M REG
) J Post-Adder/
18 x Subtracter
A0 REG ALREG P REG
\ \
A D J -
18 18 - J
. |
CREG Dedicated ovi CIN
N C-Port
C D+ A
48 - J 48
/f
48 Carry
Cascade —
opmode[6] opmode[4] opmode[5] opmode[1:0] opmode([7]
dedicated cascade PCIN CARRYIN opmode[3:2)
(BCIN)

} P
48

30

UG389_c1_03_111411

Use D and B as inputs, extract
signal on BCOUT.

Use registers D, BO, and B1.

opmode[6] in Adder mode

opmode[4] selects the Adder
output



Solution 2
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Use B and A as inputs, extract
signal on M.

Use registers B1, A1, and M.

opmode[4] selects B as an

output



Solution 3

Use B as input, extract signal
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opmode[7] in Adder mode
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Solution 4

Use B and A as inputs, extract

BCOUT M CARRYOUT CARRYOUTF :
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opmode[7] in Subtracter mode

33



Block RAM



Random-Access Memory

* RAM is a read/write memory
IN which each entry Is

18 Kb Block RAM

o lom accessed through
e addressing.
=

e The Spartan6 BlockRAM
o sore |—— ressources are described in
——uE e the following document:
—y http://www.xilinx.com/

support/documentation/
user_guides/ug383.pdf
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CLK

WE

DI

ADDR

DO

Data Flow

\

| | | |
| | | |
i | | i
| | | |
| XXXX X 1111 X | 2222 X | XXXX
| | | |
i t i }
X | @ X | bb~ X | CC~ X | dd—
| / | | | /
0000 ! XL» MEM(aa) ! old MEM(bb)! old MEM(cc)! XkMEM(dd)
1 | 1 |
1 1 1 I
| | | |
| | | | | | |
Disabled | Read | Write | Write | Read

MEM(bb)=1111
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Configurable Logic
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Slices

IS D—Q * Slices are collections of LUTs,

- | jﬁo latches, multiplexers, logic
i c gates, ... that are tightly

T [ Lj interconnected.

S | jﬁﬂ | * The example on the left holds 4
a2 LUTS, 8 DFF, and 8 multiplexers.

QR
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¥y
]
I‘.‘_ —
0
)

e Documentation on the slices can
e 1 jﬁ” be found here: http://
—E= o www.xilinx.com/support/
S documentation/user _guides/
jf—rw" uQ384.pdf
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Configurable Logic Blocks

CLBs contain one or more slices and are the building blocks of
the FPGA. They are the components that are replicated in the
FPGA in order to form an array. They are connected to the
switch matrix which defines the interconnections between the

Switch Switch | ! Switch N
11 Matrix ® Cl8 (1 Matrix \{ > C8 | Matrix <_-/ G8
< 5c 5c ie >
Switch N Switch | A Switch N
:-‘;IJ> Matrix <}:’/] s © Matrix <:> Qs <$ Matrix <:/ CL8
HE V - D
Switch N Switch Switch N
® Matrix <‘{:/’ CLB ® Matrix <:> CLe <::> Matrix ¢/ CLB
<0 AN
< 3¢ ¢ i¢ >




Input / Output Pins



PINS

* |n every design, you will have signals entering/leaving your
FPGA. To do so, you need to connect internal signals to Input/
Qutput (IO) pins, which are routed to other components on

the PCB.

e |O pins are not simply wires which enter/leave the FPGA, they

can be buffers, serialisers/deserialisers, differential drivers, ...
All those possibilities are implemented at the hardware level.

They are components that are connected directly to the pins.

* Documentation about the Spartan6 |0 pins is available here:
http://www.xilinx.com/support/documentation/user_guides/

ug381.pdf
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Ditferential Signalling

|O pins support differential signalling and can convert
differential signals to single-ended signals at the 10
level. Two pins are used to form one signal inside the
FPGA (or vice-versa).

AN

I + o | + O
Output to — - Output to
T FPGA Device Pads
—_ Input from —_
FPGA OB
Inputs from

device pads

ug381_c1_13_111909 ug381_c1_14_051209
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Tri-State |Os

An other possiblility Is to use a pin as both an input
and an output signal (I12C for example). In this case,
the FPGA must know when to drive the signal (put
voltage on the line) and when to listen (get voltage).

To do so, a tri-state buffer is used to switch between
iINnput and output mode.

- IOBUFDS

3-state input T

3-state Input
/O | (Input) + IO |1/
to/from device pad npu to/from
from FPGA - * |OB| device pad
4
O (Output) O (Output)
to FPGA to FPGA -
12_051209 A1 nf 1R 144

44
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Differential Termination
Pull-Ups/Down

The FPGA also offers the possibility to add differential
terminations to differentials pairs or pull-up/down
resistors to single-ended signals.

) Z,= 500 )—W\
Differential P Differential Input
IOutpu; >with On-Chip
Differential Termination
Z, =500 )—{Z}—
ug38t_ct 04 041709
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Clocking



Clocking Ressources

* The full documentation on clocking ressources In
the Spartan6 devices can be found here: hitp://
Www.Xilinx.com/support/documentation/
user_guides/ug382.pdt

 We will focus on the most common operations that
can be performed on clocks.
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Clock Signals

* Clock signals offer the possibility to drive a design
at a given frequency. This is needed when using
communication protocols or any other task that
need some sort of synchronicity.

* As previously shown, components and paths will
add delay to the signals. This is a major problem
for clocks.

* Therefore, the FPGA is equipped with a dedicated
high-speed, low-squew, clock network.
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Clock Network
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Clocks live in two dedicated
networks: global & local network.

The global network spans all over the
FPGA and allows the clocks to be
transferred from one domain to
another.

The local networks provide clocks to
specific sectors of the FPGA.

Clock buffers and multiplexers are
used to select which signal enters
which part of the device.

The clock network can be seen as an
water irrigation system that covers
the entire FPGA.



Buffers and Multiplexers

The FPGA is equipped with global buffers (BUFG) and
local butfers (BUFH).

Global buffers are used to bring signals into the global
clock network.

Local buffers are used to bring clocks from the global
to the local network.

Clock multiplexers are also present in the FPGA and
allow to switch between clocks dynamically or select
which clocks will enter a defined domain.
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Digital Clock Management

DCM_SP

 DCMs offer the possibility to generate, deskew,
phase-shift, ... a given clock signal. From a
given input clock, they will:

CLKIN CLKO
CLKFB CLKS0
RST CLK180
CLK270

CLK2X

CLK2X180

CLKDV

CLKFX

CLKFX180

PSEN STATUS[7:0]
PSINCDEC LOCKED
PSCLK PSDONE

 shift the clock by 0°, 90°, 180°, or 270°
e double the frequency (0° or 180° shift)

« divide or multiply the frequency by a given tactor

(0° or 180° shift)

* The clocks generated by the DCM are not placed
on any network. They have to be routed "manually”.
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—| CLKIN CLKOUTO

Phase-Locked Loop

* PLLs are components that
generate multiple clock
signals in phase with the
cuouTs input clock but with different
frequencies.

CLKOUT1
*| CLKFBIN CLKOUT2
—*" RST CLKOUT3

RRRRRE

* The clocks generated by the
PLL are not placed on any
network. They have to be
routed “manually”.

LOCKED |—=
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Clock Management Tile

General Interconnect
BUFIO2 (DIVCLK)
Inferred GCLK route
Clocks from BUFG

Feedback clocks
from BUFIO2FB

= PLL_CLKOUT[5:0]

/ \

/

™~
CLKIN
—~~ PLL ‘ 8/
~ CLKOUT[5:0)t—
——{ CLKFB \
/
L\
pd CLKIN
DCM1
|~ 10
CLKOUT[2:0}
4 00)—*
— CLKFB
/
LIS
— ] CLKIN
DCM2
0
-~ CLKOUT[9:0)}—~
\—\
CLKFB
/

L~ DCM1_CLKOUTI9:0)

1
= DCM2_CLKOUT[S:0]
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In the Spartane,
clocking ressources are
regrouped in CMTs.
—ach CMTs contains 2
DCMs and 1 PLL.

In a CMT, clocks can
be routed between
PlLLs and DCMs.



Clocking Scheme |
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Clocking Scheme ||




FPGA



summary

LUTs, DFFs, multiplexers, ... are grouped to form Slices.
Slices are grouped to form CLBs.

An FPGA contains many CLBs which are
interconnected through a network which can be
programmed to form certain paths between CLBs.

The 10 pins of the FPGA are equipped with buffers, tri-
state buffers, ... and are also connected to this network.

Furthermore, the FPGA also contains DSPs and BRAM.
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GTP Transceivers

Integrated Block
for PCI Express
IOB Bank

IOB Cells
IOl Cells

Memory Controller
Block

F P G A Block RAM
Column

DSP Column

Clock Management
Tile Column

58




Programming an FPGA

 Programming an FPGA consists in telling each
component in each slice what its function is.

* How will the multiplexers behave”? What values
are stored in the LUTs? Are the shift registers
active”

e [t also defines which connections are made in the
switch matrix between the CLB.
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JTAG

 What allows us to program an FPGA is called JTAG, a serial
protocol that shifts data in and out of the devices it connects to.

* To program an FPGA, the design file is shifted inside the SRAM
memory of the FPGA which tells each component how to act.

TMS

TCK

TDI

TDO

™S
TCK

TDI

DEVICE 1

TDO

TMS
TCK

TDI

DEVICE 2

TDO

T™MS
TCK

TDI

DEVICE 3

TDO
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‘Permanent” configuration

* As the FPGA uses an SRAM to describe its behaviour,
the data is lost whenever the power is |ost.

e InO
eac

desi

rder to avoid manual reconfiguration of the FPGA
N time we turn it on, it is also possible to store the

gn files in a non-volatile memory outside the

FPGA called the Flash memory.

* On power up, the FPGA will try to get data out of the
Flash memory if it is present in order to configure
tselt.
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FPGA Design

* Designing for FPGAs is like playing with LEGOs:
you have basic building blocks that you assemble
In order to form a complex architecture.

* You do not program for an FPGA, but you design
with an FPGA.

62



Exerclse

* Using the building blocks of the FPGA, solve the
following problem: the FPGA is fed a clock signal
and a data signal (changing at the same frequency
as the clock but the phase is not defined). How can
you avoid sampling the data signal at the moment it
changes (invalid data)?



FPGA In the real world



What to do with an FPGA

 Now that we know what composes an FPGA, we
can integrate it in a real world electronic design.

e But how do we connect an FPGA to the outside
world?
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R1

Buttons

* |nthe top example, the output

A of the circuit IS unstable
what Is I1ts value when the
button is NOT pressed?

* |n order to not leave signals

floating, a pull-down resis
placed between the butto

Or IS
N

and the FPGA to ground t
signal.
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| EDs

 The FPGA output pins set the PCB
tracks to a given voltage and can
deliver a small amount of current to
the circuit.

* |Input pins accept small amounts of
current but will fry it a high current is
forced through them.

* FPGAs work using voltage driven logic
and not current driven logic (like NIM).
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5V Vee 5V Vee
444 Vo
35 ViH
24 Vo d Vi
20 ‘ ‘ Vi
15 feeni v, 15 v
08 Vi
l os [
04 VoL
0 GND 0 GND
5-VTIL 5-V CMOS
Standard TTL: ABT, Rail-to-Rail 5V
AHCT, HCT, ACT, bipolar HC, AHC, AC, LV-A

| ogic levels

 An FPGA functions using a given supply
voltages (3.3V, 2.5V, ...) but it can
understand a variety of logic levels
standards. For example, 2.5V logic can be
decoded by an FPGA running at 3.3V.
However, the opposite is not always true
and the risk of frying the FPGA arises.

33V Vee
’a I Vou 25V Vee
23 Vou
20 Viu
17 Viu
15 e V|
12 v,
- Vie 0.7 Vi
0.4 VoL l
02 Vo
0 GND 0 GND
3.3-VIVTTL 2.5-VCMO0S 1.8-V CMOS
LVT, LVC, ALVC AUC, AUP, AVC, AUC, AUP, AVC,
AUP, LV-A, ALVT ALVC, LVC, ALVT ALVC, LVC
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INntertace to other
components

* The interface to other components becomes simple

when the |Cs use the same logic levels as the
FPGA.

* The physical connections between chips is a set of
copper PCB tracks.

* \What requires more work is to decode/encode the

signals on those tracks in order to make the ICs
talk to each other.
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Communication protocol

8.5 Programming

8.5.1 DACS8811 Input Shift Register

The DAC8811 has a 3-wire serial interface (CS, SCLK, and DIN) compatible with SPI, QSPI, and Microwire
interface standards, as well as most DSPs. See Figure 1 for an example of a typical write sequence.

The input shift register is 16 bits wide, as shown in Figure 25. The write sequence begins by bringing the CS line
low. Data from the DIN line are clocked into the 16-bit shift register on each falling edge of CLK. The serial clock
frequency can be as high as 50 MHz, making the DAC8811 compatible with high-speed DSPs. On the 16" falling
edge of the serial clock, the last data bit is clocked in and the programmed function is executed.

At this point, the CS line may be kept low or brought high. In either case, it must be brought high for a minimum
of 20 ns before the next write sequence so that a falling edge of CS can initiate the next write sequence.

Figure 24. Data Input Register

DB15 DBO
D15 D15 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

ck TUU U UV UV U DU U U U UV U UV U OO gtT

” "
SYNC T\ | \ « [
0y, ——EA A % GO g
Invalid Write Sequence: Valid Write Sequence:
SYNC HIGH before 16th Falling Edge Output Updates on 16th Falling Edge

Figure 25. SYNC Interrupt Facility
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What's next

e After this overview of the components present
inside an FPGA, we will learn how to use them.

 We will first have a look at the development tools

avallable and then go step-by-step through the
process of implementing a design on an FPGA.
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Ressources

Spartan6 CLB: http://www.xilinx.com/support/documentation/
user_guides/ug384.pdf

Spartanc DSP48A1: http://www.xilinx.com/support/
documentation/user _guides/ug389.pdf

Spartan6 Clocking: http://www.xilinx.com/support/
documentation/user guides/ug382.pdf

Spartan6 BlockRAM: http://www.xilinx.com/support/
documentation/user_guides/ug383.pdf

Spartan6 SelectlO: http://www.xilinx.com/support/
documentation/user guides/ug381.pdf
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http://www.xilinx.com/support/documentation/user_guides/ug381.pdf
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A Vertical Spine

Clock Management Tile .
‘\E\ /16 E
HCLK Rows 16 "= === HCLK Rows
/\ I
I T o O O o e B ™™ B o I 1 O O R R B PR
T T T e LT T
| | 16 I |
H||||@||||fﬁﬁmwwfﬂﬁ|%|||||||p
g === oy
Left and Right Banks I Clock Inputs From
Clocks From 16 | : ’ Top and Bottom Banks
PLL/DCM and/or Fabric ’ : AVAVAVAYAVAVAVAYAR' BUFQBUFGAMUX (18
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and Switch Box
A 16 1= N (16 a
. 4 C T 4 -
| ; N | Pl | L { ;
" | 16 |- : ' ‘/—\ \\ 16 LI
T 4 4 1
' \“/_: DCM (x2) :‘""\/,’ \
HCLK Rows . { = HCLK Row MUX HCLK Rows
Y Vertical Spine
UG382_c1_01_081009
Figure 1-1: Spartan-6 FPGA Global Clock Structure
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CLB
CLB gm‘ DSP48A1 2'23‘ DSP48A1 lgm‘ SelectlO Logic
Slices Slices
CLB (18 Kb) (18 Kb) (18 Kb) SelectlO Logic
CLB SelectlO Logic
CLB SelectlO Logic
CL8 Block SPAaAT Block DSP4aAT Block SelectlO Logic
RAM : RAM . RAM ,

CLB (18 Kb) Slices (18 Kb) Slices (18 Kb) SelectlO Logic

BUFH BUFH CLB SelectlO Logic

- -

< >—=
CLB SelectlO Logic
CLB Block Block Block SelectlO Logic

DSP48A1 DSP48A1
CLB AN Slices - Slices AAM SelectlO Logic
(18 Kb) (18 Kb) (18 Kb)
CLB SelectlO Logic
CLB SelectlO Logic
CLB s 5 —— SelectlO Logic
ocC ock loc
16 CLB RAM DSS';:::‘ RAM DSS::SSA‘ RAM SelectlO Logic
- (18 Kb) (18 Kb) (18 Kb)

CLB

BUFG

UG382_c1_02_060410

Figure 1-2: BUFH Routing
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General Interconnect

BUFIO2 (DIVCLK)
Inferred GCLK route

Clocks from BUFG

Feedback clocks
from BUFIO2FB

o= PLL_CLKOUTI[5:0]

/

= DCM1_CLKOUT[9:0]

Figure 3-1:

/6

L 4
CLKIN
PLL
6
CLKOUT[5:0)—+4—*
L 4
} CLKFB NEVAN
1 CLKIN / \
DCM1 0
CLKOUT[9:0)— .
[ 2
CLKFB
CLKIN /\
DCM2 0
CLKOUT[9:0]}—~—+
} CLKFB

Block Diagram of the Spartan-6 FPGA CMT

= DCM2_CLKOUT[9:0]

ug382_c3_01_061213



CARRYOUT CARRYOUTF

BCOUT M
4 4 Y pcour
) D:A:B Concatenated | Carry s
48" Cascade

D REG // Y1s Z&

D ~ |
18 ‘ Pre-Adder/Subtracter 48
B1 REG CYO

BO REG )

2o T * ]
g 9 M REG
) -J B Post-Adder/
18 x Subtracter
T s (£ .
48
C REG Dedicated Y CIN
\ C-Port
C DO+ i L
48 J I ] | D 48,
'/
48 Carry
Cascade —
opmode[6] opmode[4] opmode[5] opmode[1:0] opmode[7]
dedicated cascade PCIN CARRYIN opmode[3:2]
(BCIN)

UG389_c1_03_111411

Figure 1-3: DSP48A1 Slice
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