
FPGA Design
Part I - Hardware Components

Thomas Lenzi

Approach
• We believe that having knowledge of the hardware

components that compose an FPGA allow for
better firmware design.

• Being able to visualise the ressources that a code
will exploit helps to design more efficiently and
possibly with less bugs or unexpected behaviours.

• Therefore we will start from the bottom and work
our way up.

2

Objective
• Our goal is to understand the functioning of an

FPGA in order to program it.

• We will start by considering that the FPGA is a
black box, an electronic component that sits on a
PCB and is connected to other components, but
nothing more.

• Then, step-by-step, we will go over what composes
an FPGA an explain how it works.

3

Logic Gates,
Multiplexers, LUTs, …

Combinatorial & Sequential
Logic

• Combinational logic makes use of the current
state of the inputs to define the value of the output.

• Sequential logic behaves according to the current
and past values of the inputs by registering them.

5

Logic Gates

A B AND NAND OR NOR XOR XNOR

0 0 0 1 0 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 0 1 0 0 1

OR / NOR

XOR / NXOR

NOT

AND / NAND

6

Logic gates implement boolean operations on one or
more inputs.

Combinatorial logic

Multiplexers
Multiplexers forward one out of several inputs to a
single output according to a selection signal.

S[0] S[1] Q

0 0 D0
0 1 D1
1 0 D2
1 1 D3

7 Combinatorial logic

LookUp-Tables (LUT)
LUTs are associative memories that return predefined
output signals according to the state of the input
signals. The values that will be returned are
programmed beforehand.

8

D Q

000000 01
000001

1
00

000010 11
000011 11

… …

Combinatorial logic

Latches
Latches are components that maintain a defined state and
are controlled by their inputs.

The SR flip-flop is the simplest example of this. It is an
active low SET and RESET latch.

S R Q

0 0 Forbidden
1
1

0 0
0 1 1
1 1 Unchanged

9 Sequential logic

Registers
Registers are latches that store “data”.

The D flip-flop (DFF) for example changes state only on the
rising edge of the clock. It can therefore be seen as a
sample-and-hold register.

D CLK Q

X ↑ X
X
1

↓ Unchanged
X 1 Unchanged
X 0 Unchanged

10 Sequential logic

Other components
• Buffers isolate their input and output pins and allow

for high fanout of the signal.

• Shift registers shift the input stream of data by a
given number of bits.

• Serialisers / deserialisers transform parallel (serial)
data into serial (parallel) data.

• Adders and Multipliers are dedicated components
that are optimised to perform mathematical operations.

11

Delays
• Every component in the design adds delay to the

signal.

Ideal behaviour

Real behaviour

• This is OK as long as you are aware of it and take it
into account when you design your firmware.

12

Examples

13

What is the output of
this circuit ?

What is the behaviour of this
circuit ?

Examples

14

Continuously inverts the output Outputs 1 if the input is 1 for two consecutive clock cycles

Exercises
1. Using only logic gates, write the schematic of the 4-inputs

multiplexer.

2. Using D flip-flops, write the schematic of a 3-bits shift register
(the output is shifted by 3 bits).

3. Using D flip-flops, write the schematic of a 4-bits deserialiser.

4. Write a counter by 3 (“000”, “011”, …) using only logic gates
and D flip-flops.

5. Write the logic for an adder of two number of two bits which
yields a result on three bits.

15

Solution 1
D[3:0]

S[1:0]

Q

16

Solutions 2 & 3

17

I O

I

O[0]O[1]O[2]O[3]

Solution 4
O[2] O[1] O[0]

0 0 0
0 1 1
1 1 0
0 0 1
1 0 0
1 1 1
0 1 0
1 0 1

18

O[0]’ = NOT O[0]

O[1]’ = 0[0] NXOR 0[1]

O[2]’ = O[2] XOR (O[1] OR O[2])

O[0]

O[1]

O[2]

Solution 5

19

O[0]
O[1]
O[2]

A[0]
B[0]

A[1]
B[1]

Digital Signal
Processing

Digital Signal Processors

21

• DSPs perform fast mathematical operations on
signals and can be used to implement a wide
range of time-critical algorithms.

• We will analyse the schematic of the DSP48A1
block which is used in the Xilinx Spartan6 FPGA.

• A full documentation can be found at the following
address: http://www.xilinx.com/support/
documentation/user_guides/ug389.pdf

http://www.xilinx.com/support/documentation/user_guides/ug389.pdf

DSP48A1 I

22

DSP48A1 II

23

Each input is equipped with a multiplexer
that either selects a buffered/synchronous or
an unbuffered/asynchronous version of the
signal.

DSP48A1 III

24

The D and B data buses then go
through an Adder/Subtracter which
behaviour is determined by the
opmode[6] bit.

A multiplexer then performs a
selection between the raw B signal
or the D±B signal.

DSP48A1 IV

25

The outputs can once
again be made
synchronous or be kept
asynchronous through two
D latches and
multiplexers.

Note the second register
on the A signal which
allows for synchronisation
between A and B/D±B.

DSP48A1 V

The B/D±B signal is
then multiplied by
the A signal and
once again
registered.

26

DSP48A1 VI

27

Finally, two multiplexers allow
for fine control of the signals
that enter the second Adder/
Subtracter.

The output signal can be read
on the P port and carry bits can
be propagated to the next DSP.

Why is this relevant?
• In any programming language (C, Python, etc) you would write

something similar to 
 
P = (D + B) * A - C 
 
which the CPU would execute after compilation. This is not the
case when designing for FPGAs.

• You need to think about what the hardware does in order to code
efficiently!

• The above code could be understood by the VHDL “compiler”,
but it would be bad practice to use it. You wouldn’t be able to
control when the signals are valid or not.

28

Exercises
By parametrising the DSP48A1, perform the following
operations:

1. R = A + B

2. R = A * B

3. R = A + B + C + D

4. R = A * B - C * D

29

Solution 1

30

Use D and B as inputs, extract
signal on BCOUT.

Use registers D, B0, and B1.

opmode[6] in Adder mode

opmode[4] selects the Adder
output

Solution 2

31

Use B and A as inputs, extract
signal on M.

Use registers B1, A1, and M.

opmode[4] selects B as an
output

Solution 3

32

Use B as input, extract signal
on P.

Use registers B1 and P.

opmode[4] selects B as an
output

opmode[1:0] selects B as
output of multiplexer X

opmode[3:2] selects P as
output of multiplexer Z

opmode[7] in Adder mode

Solution 4

33

Use B and A as inputs, extract
signal on P.

Use registers B1, A1, M and P.

opmode[4] selects B as an
output

opmode[1:0] selects M as
output of multiplexer X

opmode[3:2] selects P as
output of multiplexer Z

opmode[7] in Subtracter mode

Block RAM

Random-Access Memory
• RAM is a read/write memory

in which each entry is
accessed through
addressing.

• The Spartan6 BlockRAM
ressources are described in
the following document:
http://www.xilinx.com/
support/documentation/
user_guides/ug383.pdf

35

http://www.xilinx.com/support/documentation/user_guides/ug383.pdf

Data Flow

36

Configurable Logic
Blocks

Slices
• Slices are collections of LUTs,

latches, multiplexers, logic
gates, … that are tightly
interconnected.

• The example on the left holds 4
LUTS, 8 DFF, and 8 multiplexers.

• Documentation on the slices can
be found here: http://
www.xilinx.com/support/
documentation/user_guides/
ug384.pdf

38Spartan6 SLICEX

http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

Spartan6 Slices

39Spartan6 SLICEL Spartan6 SLICEM

Configurable Logic Blocks
CLBs contain one or more slices and are the building blocks of
the FPGA. They are the components that are replicated in the
FPGA in order to form an array. They are connected to the
switch matrix which defines the interconnections between the
blocks.

40

Input / Output Pins

Pins
• In every design, you will have signals entering/leaving your

FPGA. To do so, you need to connect internal signals to Input/
Output (IO) pins, which are routed to other components on
the PCB.

• IO pins are not simply wires which enter/leave the FPGA, they
can be buffers, serialisers/deserialisers, differential drivers, …
All those possibilities are implemented at the hardware level.
They are components that are connected directly to the pins.

• Documentation about the Spartan6 IO pins is available here:
http://www.xilinx.com/support/documentation/user_guides/
ug381.pdf

42

http://www.xilinx.com/support/documentation/user_guides/ug381.pdf

Differential Signalling
IO pins support differential signalling and can convert
differential signals to single-ended signals at the IO
level. Two pins are used to form one signal inside the
FPGA (or vice-versa).

43

Tri-State IOs
An other possibility is to use a pin as both an input
and an output signal (I2C for example). In this case,
the FPGA must know when to drive the signal (put
voltage on the line) and when to listen (get voltage).

To do so, a tri-state buffer is used to switch between
input and output mode.

44

Differential Termination
Pull-Ups/Down

The FPGA also offers the possibility to add differential
terminations to differentials pairs or pull-up/down
resistors to single-ended signals.

45

Clocking

Clocking Ressources

• The full documentation on clocking ressources in
the Spartan6 devices can be found here: http://
www.xilinx.com/support/documentation/
user_guides/ug382.pdf

• We will focus on the most common operations that
can be performed on clocks.

47

http://www.xilinx.com/support/documentation/user_guides/ug382.pdf

Clock Signals
• Clock signals offer the possibility to drive a design

at a given frequency. This is needed when using
communication protocols or any other task that
need some sort of synchronicity.

• As previously shown, components and paths will
add delay to the signals. This is a major problem
for clocks.

• Therefore, the FPGA is equipped with a dedicated
high-speed, low-squew, clock network.

48

Clock Network
• Clocks live in two dedicated

networks: global & local network.

• The global network spans all over the
FPGA and allows the clocks to be
transferred from one domain to
another.

• The local networks provide clocks to
specific sectors of the FPGA.

• Clock buffers and multiplexers are
used to select which signal enters
which part of the device.

• The clock network can be seen as an
water irrigation system that covers
the entire FPGA.

49

Buffers and Multiplexers
• The FPGA is equipped with global buffers (BUFG) and

local buffers (BUFH).

• Global buffers are used to bring signals into the global
clock network.

• Local buffers are used to bring clocks from the global
to the local network.

• Clock multiplexers are also present in the FPGA and
allow to switch between clocks dynamically or select
which clocks will enter a defined domain.

50

Digital Clock Management
• DCMs offer the possibility to generate, deskew,

phase-shift, … a given clock signal. From a
given input clock, they will:

• shift the clock by 0°, 90°, 180°, or 270°

• double the frequency (0° or 180° shift)

• divide or multiply the frequency by a given factor
(0° or 180° shift)

• The clocks generated by the DCM are not placed
on any network. They have to be routed “manually”.

51

• PLLs are components that
generate multiple clock
signals in phase with the
input clock but with different
frequencies.

• The clocks generated by the
PLL are not placed on any
network. They have to be
routed “manually”.

Phase-Locked Loop

52

Clock Management Tile

In the Spartan6,
clocking ressources are
regrouped in CMTs.
Each CMTs contains 2
DCMs and 1 PLL.

In a CMT, clocks can
be routed between
PLLs and DCMs.

53

Clocking Scheme I

54

Clocking Scheme II

55

FPGA

Summary
• LUTs, DFFs, multiplexers, … are grouped to form Slices.

• Slices are grouped to form CLBs.

• An FPGA contains many CLBs which are
interconnected through a network which can be
programmed to form certain paths between CLBs.

• The IO pins of the FPGA are equipped with buffers, tri-
state buffers, … and are also connected to this network.

• Furthermore, the FPGA also contains DSPs and BRAM.

57

58

FPGA

Programming an FPGA
• Programming an FPGA consists in telling each

component in each slice what its function is.

• How will the multiplexers behave? What values
are stored in the LUTs? Are the shift registers
active?

• It also defines which connections are made in the
switch matrix between the CLB.

59

JTAG
• What allows us to program an FPGA is called JTAG, a serial

protocol that shifts data in and out of the devices it connects to.

• To program an FPGA, the design file is shifted inside the SRAM
memory of the FPGA which tells each component how to act.

60

“Permanent” configuration
• As the FPGA uses an SRAM to describe its behaviour,

the data is lost whenever the power is lost.

• In order to avoid manual reconfiguration of the FPGA
each time we turn it on, it is also possible to store the
design files in a non-volatile memory outside the
FPGA called the Flash memory.

• On power up, the FPGA will try to get data out of the
Flash memory if it is present in order to configure
itself.

61

FPGA Design

• Designing for FPGAs is like playing with LEGOs:
you have basic building blocks that you assemble
in order to form a complex architecture.

• You do not program for an FPGA, but you design
with an FPGA.

62

Exercise

• Using the building blocks of the FPGA, solve the
following problem: the FPGA is fed a clock signal
and a data signal (changing at the same frequency
as the clock but the phase is not defined). How can
you avoid sampling the data signal at the moment it
changes (invalid data)?

FPGA in the real world

What to do with an FPGA

• Now that we know what composes an FPGA, we
can integrate it in a real world electronic design.

• But how do we connect an FPGA to the outside
world?

65

Buttons
• In the top example, the output

A of the circuit is unstable:
what is its value when the
button is NOT pressed?

• In order to not leave signals
floating, a pull-down resistor is
placed between the button
and the FPGA to ground the
signal.

66

A

B

LEDs
• The FPGA output pins set the PCB

tracks to a given voltage and can
deliver a small amount of current to
the circuit.

• Input pins accept small amounts of
current but will fry if a high current is
forced through them.

• FPGAs work using voltage driven logic
and not current driven logic (like NIM).

67

Logic levels
• An FPGA functions using a given supply

voltages (3.3V, 2.5V, …) but it can
understand a variety of logic levels
standards. For example, 2.5V logic can be
decoded by an FPGA running at 3.3V.
However, the opposite is not always true
and the risk of frying the FPGA arises.

68

Interface to other
components

• The interface to other components becomes simple
when the ICs use the same logic levels as the
FPGA.

• The physical connections between chips is a set of
copper PCB tracks.

• What requires more work is to decode/encode the
signals on those tracks in order to make the ICs
talk to each other.

69

Communication protocol

70

What’s next

• After this overview of the components present
inside an FPGA, we will learn how to use them.

• We will first have a look at the development tools
available and then go step-by-step through the
process of implementing a design on an FPGA.

71

Ressources
• Spartan6 CLB: http://www.xilinx.com/support/documentation/

user_guides/ug384.pdf

• Spartan6 DSP48A1: http://www.xilinx.com/support/
documentation/user_guides/ug389.pdf

• Spartan6 Clocking: http://www.xilinx.com/support/
documentation/user_guides/ug382.pdf

• Spartan6 BlockRAM: http://www.xilinx.com/support/
documentation/user_guides/ug383.pdf

• Spartan6 SelectIO: http://www.xilinx.com/support/
documentation/user_guides/ug381.pdf

72

http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf
http://www.xilinx.com/support/documentation/user_guides/ug383.pdf
http://www.xilinx.com/support/documentation/user_guides/ug381.pdf

Schematics

74

75

76

77

