FPGA Design

Part Ill - Combinatorial VHDL

Thomas Lenzi

Vrije UNIVERSITE
Universiteit LIBRE
Brussel DE BRUXELLES

X

Objective

 We will introduce you to VHDL and to combinatorial
statements of VHDL using some examples and
exercises.

VHDL Basics

Few Notes on VHDL

e VVHDL is NOT case sensitive.

* VHDL is extremely talkative...

VHDL Entities

* In VHDL, every ftile you create is an entity.

* Entities can be seen as an electronic components

which takes inputs, runs some logic on them, and
set outputs.

e Creating a VHDL entity is similar to declaring an
|Cs. Once you have declared and defined it, you
can use It wherever you want in your design.

Default VHDL File

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

-—-use IEEE.NUMERIC STD.ALL;

—=library UNISIM;
-use UNISIM.VComponents.all:;

entity hasic module is
end basic_module;

architecture Behawvioral of basic_module is

begin

end Behawvioral:

This Is the default VHDL file that
|ISE creates for you (I removed
some of the comments).

Three sections are visible;

e |Ibraries

e entity Is

e architecture of

LIbraries

e Like in C, VHDL has libraries that
you can include.

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

 The library <name> statement
—=library UNISIM; _ |mports a |Ibrary

-—use UNISIM.VComponents.all:;

entity hasic module is

e bt poduia; | - * The use <name> statement
architecture Behavioral o asic_module is removes the namespace before
the objects it imports.

begin

end Behawvioral:

* [hrough exercises we will see
what each library is used for.

v

ENtity IS

* The entity <name> is statement
e declares an entity. It Is its
—-library UNISIM; _ prOtOtype

-use UNISIM.VComponents.all:;

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

entity hasic module is
end basic_module;

. _ | -+ We will later on add statements
Behavioral ot basic module 3= n this region to tell the system
what the inputs and what the
outputs are.

end Behawvioral:

Architecture of

library IEEE;

* The architecture of <name>
) statement is where the logic
that composes the entity sits.

—=library UNISIM;
-use UNISIM.VComponents.all:;

entity hasic module is
end basic_module;

architecture Behawvioral of basic_module is

* |tis the body of the entity where
the logic Is described.

begin

end Behawvioral:

Adding Inputs and Outputs

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

——use IEEE.NUMERIC S5TD.ALL;

—=library UNISIM;
——use TNISIM.VComponents.all:;

entity basic module is

port |
first input : in std logic;
second input : in std logic;
output : out std logic

) :

end basic_module;

architecture Behawvioral of basic_module

begin

end Behawvioral:

is

For a module to do something
Interesting, you need to add inputs and
outputs.

The 10s are defined in a port statement
of the entity is.

In this exemple, you are telling the
design that your entity has 3 ports:

e 2 input wires (first_input,
second_input)

* 1 output wire (output)

10

VHDL Types

 When using types in VHDL, you have to imagine wires and not
pits in memory.

 VHDL comes with two main types:

» std_logic, which is a single wire/bit

» std_logic_vector, which is a vector of wires/bits
e and with some helping types:

 integer

* boolean

11

std_logic

signal <name> : std_logic [:= <default>];

 An std_logic takes the following value: ‘0O’, “1’, or
'/’ (single quotes!).

* '/’ puts the signal in high-impedance mode so that
other modules can drive it.

* |In general, one signal is driven by one module.

12

std_logic_vector

signal <name> : std_logic_vector(<range>) [:= <default>];

* The range of an std_logic_vector defines the number of bits and the direction of
the bits:

« 7 downto O : means that the MSB of the 8 bits is placed on the left side;
* 0to 3: means that the LSB of the 4 bits is placed on the left side.
e Values for vectors are given using double quotes:
e vector_signal <= "00110011";
e vector_signal <= x"AB”; — in hexadecimal
« Or using aggregates that describe each bit:

e vector_signal <= (0 => ‘1", 3 => ‘0’, others => '0’);

13

Nnteger

signal <name> : integer [range <from> to <to>] [:=
<default>];

* An integer signal can be given a range of operation
using the “range” statement.

* Values given to integer are... integer (N0 quotes).

14

hoolean

signal <name> : boolean [:= <default>];

e Booleans take true or false as value.

15

Adding Logic

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—-—use IEEE.NUMERIC STD.ALL;

—=library UNISIM;
——use UTNISIM.VComponents.all;

entity hasic module is
port |

first_ input : in std logic;
second input : in std logic;
output : out std logic

)

end basic module;

architecture Behawvioral of basic_module is

begin

output <= first input and second input;

end Behawvioral:;

 Now that we have |0s, we can
use them in the architecture of
to run some logic.

* [nthis exemple, we set the
output to the logic AND of the
two Inputs.

16

Signals and Assignation

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

-—use IEEE.NUMERIC STD.ALL;

—=library UNISIM;
-use UTNISIM.VComponents.all;

entity hasic module is
port |

first_ input : in std logic;
second input : in std logic;
output : out std logic

) :

end basic module;

architecture Behawvioral of basic_module is
Signal internal : std logic := '0';

begin

internal <= first_input and second input;

output <= internal;

end Behawvioral;

e Apart from [Os, it is also
possible to create local
signals inside an entity.

* [he declaration of local
signals is done before the
begin of the architecture.

* Signals are assigned using the
‘<=" operator.

17

Back to |Os

* |nput signals can only be found at the right-hand
side of the assignment operator.

e QOutput signals can only be found at the left-hand
side of the assignment operator.

* |f you want to use the value of the output signal,
you should create a temporary local signal to hold

that value.

18

lop Level

* As previously stated, the Top Level Is an entity like
every other, except that its 10s are directly
connected to the pins of the FPGA.

* Jo set a module as Top Level, right click the file and
select “Set as Top Module...”.

* For a project to compile, we need to assign each
signal of the Top Level with a pin. To do so, we will
need to populate the UCF file.

19

UCF Pin Constraints

NET "clk SOMHz i" LOC = BS8;

Clock

LEDS

NET "leds o<7>" LOC = G1;

NET "leds o<6>" LOC = P4;

NET "leds o0<3> LOC = N4;

NET "leds o<4> LOC = N5;

NET "leds o<3>" LOC = P6;

NET "leds o<Z>" LOC = P7; \ \ \

NET "leds o<1>" LOC = M11:; o E h | d t Th
e, acn signal 1s mappea 1o a pin. c

pin numper can be found in the

NET "sw i<7>" LOC = N3;

WeT g scoar Lo - g2 datasheet or on the development
NET "sw i<5>" LOC = F3;

NET [T Lo -6 board next to each component.
NET "sw_i<2>" LOC = K3;

NET "sw i<1>" LOC = L3;

NET "sw _i<0>" LOC = P11;

Push button

NET "bhtn i<3>" LOC = A7;

NET "btn i<zZ>" LOC = M4;

NET "hbtn 1<1>" LOC = C11;

NET "btn i<0>" LOC = G12;

[

20

Exerclse

 Write a VHDL top level entity that takes an input

signal and forwards it on an output bus of two
elements.

* Implement this on the FPGA using a push button as
source and two LEDs as output.

21

Combinatorial Logic

|_ogic Operators

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

use IEEE.NUNERIC STD.ALL;

~=library UNISIM:
--use UNISIM.VComponents.all;

entity basic_module is
port (

first_input : in std logic vector (7 downto 0);
second_input : in std logic vector (7 downto 0);
outpuc : out std logilc vector (7 downto 0)

)

end basic module;
architecture Behavioral of basic_module is

bhegin

output (0) <= first input(0) and second_input(0):
output (1) <= first_input (1) nand second_input(l):’
output (2) <= first_input(2) or second_input(2):;
output (3) <= first_inpuc(3) nor second_inpuc(3):

output (4) <= first input(4) xor second input(4):;

output (7 downto 6) <= first input (7 downto 6);

output (S5) <= not (first_input (5) xor second_input(S)):

end Behavioral;

* All logic operators can be
used except for nxor.

 Jo select an elementina
std_logic_vector, use
parentheses:

* with a range to make
another std_logic_vector,

e With an index to make a
std_logic.

23

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—-—-use IEEE.NUMERIC STD.ALL:

—=library UNISIMN;
——use UTNISIM.VComponents.all:;

entity basic_module is

port
first input : in std logic v
second_input : in std logic v
output : out std logic

)2

end basic_module;

With

ctor (3 downto 0);
ctor (1l downto 0);

architecture Behawvioral of basic_module is

begin

first input (0) when "00",
first inputi(l) when "O1',
first input(2) when "10',
first input (3) when "117",
first input (0) when others;

with second input select output <=

end Behawvioral;

24

The with statement
assigns a signal
according to the value
of another signal.

It can be seen as a
multiplexer.

When

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

-—-use IEEE.NUMERIC STD.ALL;

—=library UNISIM;
——use UNISIM.VComponents.all:;

entity hasic module is

port |
first input : in std logic wvector (3 downto 0);
second input : in std logic vector (1 downto O0);
output : out std logic

)

end basic_module;

architecture Behawvioral of basic_module is

begin
output <= first input (0) when second input = "00" else
first_input(l) when second input = "01" else
first input(2) when second input = "10" else
first input(3) when second input = "11" else
first_ input (0);

end Behawvioral:

25

With the when
statement the

assig

nment of a signal

depends upon a

cond

tion and not only

the value of a signal.

Conditions

e Conditions are combinations of one or more tests.

* Tests on signals use the following operators: =
(equal), /= (not equal), <, >, <=, >=.

* Conditions are glued together using logic operators
(and, or, not, ...).

20

Example: Buttons to LEDS

library IEEE:;
use IEEE.STD LOGIC 1164.ALL;

--use IEEE.NUMERIC 3TD.ALL;

-=-library UNISIN;
—=use UNISIM.VComponents.all:

entity basic module is

porc |
btn_i : in std logic_vector (3 downto 0);
leds o : out std logic vector (7 downto 0O)
):

end basic module;

archivecrture Behavioral of basic module is

signal and 01 : std _logic := '0';
begin
l:ds_o {1 downto Q) <= "10";

leds _o(2) <= '1';
leds o(3) <= btn 1i(3);

leds_o0(4) <= btn_i(2) or btn_i(3):

and 01 <= btn 1(0) and btn_i(1);
leds_o(5) <= and_01:

leds o(6) <= '1' when btn_1 = "I " else '0';

with btn_1 select leds o(7) <=
'1' when "0001"™ | "Coio0"™ |
'0' when "0I ol

'0' when others;

end Behavioral;

This example summarises
what we learned until now:

* [ypes
* Assignation
* Logic & Test operators

 \With / when statements

27

EXerclises

Write a code that connects the status of each push
button (pressed or released) to an LED.

For each LED, create the following logic: the LED is
controlled by a push button, but only if a switch is ON.
Otherwise it stays OFF.

Write a script that turns on the LEDs if more than 4
switches are turned ON.

For each exercice, write the schematic diagram using
fundamental logic blocks.

28

Solution

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

——use IEEE.NUMERIC STD.ALL:;
- ibuf obuf

—=library UNISIM;

—-—use UNISIM.VComponents.all; btn_i_0_IBUF leds_o_0_OBUF

entity ex4 is

port |
clk SOMHz i in std logic; leds 0o 0 _mux00001
sw_1i in std logic vector (7 downto 0);
btn 1 in atd_loglq_vector(S downto 0); ibuf ut? obuf
leds o out std logic wvector (7 downto 0) : ‘ 4
)2

sw_i_0_IBUF leds_o_1_OBUF

end ex4;

is n

architecture Behawvioral of ex4
begin

leds_o_1_mux00001

'1' else '0';

leds o(0) <= btn i(0)

when sw_i(0)

leds o(l) <= btn i(0) when sw_i(1l) = '1' else '0'; ibuf lut? obuf
leds o(2) <= btn i(1l) when sw _1i(2) '1' else '0'; -

leds o0i(3) <= btn i(l) when sw i1(3) = '1' else '0'; _

leds o0{4) <= btn i{2) when sw _i{4) = '1' else '0'; sw_L1_1BUF HGS_0_e OoUF
leds o(3) <= btn i(2) when sw i(5) = '1' else '0';

leds o(6) <= btn i(3) when sw i(6) = '1' else '0'; =

leds o(7) <= btn i(3) when sw_1i(7) '1' else '0';

end Behawvioral:;

29

leds_o_

-

<

mux00001

Mathematics

Signed & Unsigneo

* The use ieee.numeric_std.all adds a new type to
VHDL.:

* signed / unsigned, which is an std_logic_vector
that acts like an integer

* signed / unsigned makes it easier to add and
compare std_logic_vectors to integers.

32

signed / unsigned

signal <name> : unsigned(<range>) [:= <detault>];

* Signed / unsigned are std_logic_vectors that
behave like integers.

* They are assigned like std_logic_vectors (double
quotes), but can be incremented with integers are
compared to them.

* unsigned_signal <= unsigned_signal + 5;

33

Mathematical Operators

 The available mathematical operators are: +, -, *, /, abs,
mod, rem.

* But you should be careful using them!

e The only ones | recommend using are +/- and abs as they
can be easily translated to logic. * is also acceptable.

* +/-, " can only be used with integers and signed/
unsigned.

e abs can only be used with signed/unsigned.

34

Numbers

to_signed(l,S'length)

http://www.bitweenie.com/

Type Casting

Bit Vectors

std_logic_vector(S)

35

Going from
std_logic_vector to
signed/unsigned is a
simple cast operation
(NO cost).

Going from integer to
any other type Is a
conversion function
(cost).

http://www.bitweenie.com/

Exerclse

* Use the switches as input, convert it to an
unsigned, add 5 to the value, and show the result
on the LEDs.

36

Solution

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

use IEEE.NUMERIC S5TD.ALL:;

—=library UNISIM;
——use NISIM.VComponents.all:;

entity ex4 is

port |
clk SOMHz i : in std logic;
sw_1i : in std logic wvector (7 downto 0);
btn 1 : in std logic vector (3 downto O0);
leds o : out std logic vector (7 downto 0)
)
end ex4;

architecture Behavioral of ex4 is
signal math : unsigned(? downto 0) := (others => '0');
begin
math <= unsignedisw_1i) + 5;
leds o <= std logic wvector (math);

end Behawvioral:;

37

Generics & Generates

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

--use IEEE.NUMERIC STD.ALL;

——library UNISIM;
use UNISIMN.VComponents.all:;

entity ex4 is

(Generics

generic |
DEFAULT LED
my other param @ integer := 255

)2

: std logic := '0';

port|(
Clk_SOHHZ_i : in E‘-t.d_ll:ll -
sw_1i : in std lo B
btn 1 : in std logic
leds o : out std logic

)

end ex4;

architecture Behawvioral of ex4 is
begin

oo™ & DEFAULT LED;

end Behawvioral:

Jic
gic wvector (7 downto 0);
gic vector (3 downto 0);
vector (7 downto 0)

_ike C’s #define, VHDL has
parameters that can be set
oefore the generation of the
design.

They are called generics.

Generics take a default
value which can then be
overwritten when the entity
IS used.

39

For (Generate

library IEEE; « VVHDL also offer the

use IEEE.STD LOGIC 1164.ALL:

possibility to duplicate a
—=library UNISIM; COde US|ng a for |Oop FOr

——use UNISIM.VComponents.all:;

entity ex4 is |OOpS in VHDL are nOt
port |

SO TS somse terative processes like in
o ot =t iois vecrar (7 towco ©) C. They simply duplicate

) : : :

code that will be run in

architecture Behavioral of ex4 is
parallel.

loop leds : for I in 0 to 7 generate
begin

leds o(I) <= btn i(I / 2) when sw i(I) = '1' else '0'; ° The example On the |eft iS
identical to the previous
end Behavioral; example Wlth the LEDS

40

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—--use IEEE.NUMERIC STD.ALL:

——library UNISIM;
——use TNISIM.VComponents.all:;

entity ex4 is

If Generate

port(
clk S50MHz i : in std logic: ®
sw_1 : in std logic vector (7 downto 0);
btn 1 : in std logic vector (3 downto O0);
leds o : out std logic vector (7 downto O)
)2
end ex4;
architecture Behavioral of ex4 is
begin
loop leds: for I in 0 to 7 generate
begin
cond leds: if (I wod 2 = 0) generatd
leds o(I) <= btn i(I / 2) when sw_i(I) = '1' else '0';

end generate;

end generate;

end Behawvioral:

41

An If generate
statement also exists
which generates the
block only if the
condition is fultilled.

Exerclse

* Do the following exercise using a For Generate
loop.

* For each LED, create the tollowing logic: the LED is
controlled by a push button OR by a switch (logic
OR of the two).

42

Solution

library IEEE;
use IEEE.STD LOGIC 1164.ALL:

-—-use IEEE.NUMERIC STD.ALL;

—=library UNISIHN;
——use UNISIM.VComponents.all:;

entity ex4 is

port |
clk S0MHz i : in std logic;
sw_1i ! in std logic wvector (7 downto 0);
btn 1 : in std logic vector (3 downto 0);
leds o : out std logic vector (7 downto 0);
):
end ex4;

architecture Behawvioral of ex4 is
begin

buttons gen: for I in 0 to 7 generate
begin

leds o(I) <= btn i(I / 2) or sw_i(I):
end generate;

end Behawvioral:

43

Using Entities

Using Entities

* Let's say we have an entity as
iizr?ggETgiiiLCﬁI}IC_l164..ﬁ.LL; Shown On the |eft WhiCh
-—-use IEEE.NUMERIC STD.ALL; implements a |Ogica| and Of

—=library UNISIM;

-use UNISIM.VComponents.all; tWO S i g n a | S .

entity LogicalldlND is
port i

4 ix o owin This entity can be used in

:l .

L other entities all over the
architecture Behavioral of LogicallND is deSign .

begin

0 0 <= a_i and b_i;

* Jo do so, we will iInstantiate
the entity.

45

library IEEE; | | | Stal | < :< 3
use IEEE.STD LOGIC 1164.ALL;

library work:;
—--use IEEE.NUMERIC STD.ALL;

* When instantiating an entity, a

entity UsingdlND is

pore { mapping between signals in the

e caller and the called module

); should be done.

end UsingldND;

architecture Behavioral of UsingldlND is

Seman st 0 * In this example, we implement
f=aAND b AND c

first instance: entity work.LogicalldND
port map |

a i => a,

b i=>h,

T * Note that the instances are totally
second instance: entity work.LogicalldND diStinCt frOm One anOther.

port map i
& 1 => tup,
b > C,
o > £

i
(u]

)
46

end Behawvioral:;

Instances and Generics

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

library work:;
--use IEEE.NUMERIC STD.ALL;

—=library UNISIM;
——use TNISIM.VComponents.all:;

entity UsingldND is

port |
a : in std logic;
b : in std logic;
C : in std logic;
f : out std logic

)
end UsingldlND;

architecture Behavioral of UsingldND is
Signal twp : std logic := '0';
begin

first instance: entity work.LogicallND
generic map (
PARAMETER => true
)
port map (
a i => a,
b i=>h,
0O 0 => tup

)

end Behawvioral:;

Generics can also be set when
iInstantiating an entity.

The values of the generics are
only applied to one instance
nd not globally.

Q

47

Project Structure

* When instantiating entities, the
structure of your project will change.

SR * A tree of entities will appear.

=1 £ xc3s100e-4cpl132

...

* |n this case, the LogicalAND entity
doesn’t exist so an interrogation mark

s displayed instead of the entity
tselt.

48

VHDL to FPGA

RIL and lechnology
Schematics

* |t you want to visualise your design at the hardware
component level, run the “Synthesize - XST” tool
and then select the “View RTL Schematic” or “View

Technology Schematic” options.

* [he RTL schematic Is your design translated in
building blocks (logic gates, multiplexers, ...).

* [he technology schematic is your design adapted
for the FPGA you are working with. It will only use
ressources that are available.

50

| EDs example

Technology

* This is the result we get if we
use the design of the LEDs
with the generate conditions.

51

