
FPGA Design
Part III - Combinatorial VHDL

Thomas Lenzi

Objective

• We will introduce you to VHDL and to combinatorial
statements of VHDL using some examples and
exercises.

2

VHDL Basics

Few Notes on VHDL

• VHDL is NOT case sensitive.

• VHDL is extremely talkative…

4

VHDL Entities
• In VHDL, every file you create is an entity.

• Entities can be seen as an electronic components
which takes inputs, runs some logic on them, and
set outputs.

• Creating a VHDL entity is similar to declaring an
ICs. Once you have declared and defined it, you
can use it wherever you want in your design.

5

Default VHDL File
• This is the default VHDL file that

ISE creates for you (I removed
some of the comments).

• Three sections are visible:

• libraries

• entity is

• architecture of

6

Libraries
• Like in C, VHDL has libraries that

you can include.

• The library <name> statement
imports a library.

• The use <name> statement
removes the namespace before
the objects it imports.

• Through exercises we will see
what each library is used for.

7

Entity is

• The entity <name> is statement
declares an entity. It is its
prototype.

• We will later on add statements
in this region to tell the system
what the inputs and what the
outputs are.

8

Architecture of

• The architecture of <name>
statement is where the logic
that composes the entity sits.

• It is the body of the entity where
the logic is described.

9

Adding Inputs and Outputs
• For a module to do something

interesting, you need to add inputs and
outputs.

• The IOs are defined in a port statement
of the entity is.

• In this exemple, you are telling the
design that your entity has 3 ports:

• 2 input wires (first_input,
second_input)

• 1 output wire (output)Name Direction Type

10

VHDL Types
• When using types in VHDL, you have to imagine wires and not

bits in memory.

• VHDL comes with two main types:

• std_logic, which is a single wire/bit

• std_logic_vector, which is a vector of wires/bits

• and with some helping types:

• integer

• boolean

11

std_logic

signal <name> : std_logic [:= <default>];

• An std_logic takes the following value: ‘0’, ‘1’, or
‘Z’ (single quotes!).

• ‘Z’ puts the signal in high-impedance mode so that
other modules can drive it.

• In general, one signal is driven by one module.

12

std_logic_vector
signal <name> : std_logic_vector(<range>) [:= <default>];

• The range of an std_logic_vector defines the number of bits and the direction of
the bits:

• 7 downto 0 : means that the MSB of the 8 bits is placed on the left side;

• 0 to 3 : means that the LSB of the 4 bits is placed on the left side.

• Values for vectors are given using double quotes:

• vector_signal <= “00110011”;

• vector_signal <= x”AB”; — in hexadecimal

• Or using aggregates that describe each bit:

• vector_signal <= (0 => ‘1’, 3 => ‘0’, others => ‘0’);

13

integer

signal <name> : integer [range <from> to <to>] [:=
<default>];

• An integer signal can be given a range of operation
using the “range” statement.

• Values given to integer are… integer (no quotes).

14

boolean

signal <name> : boolean [:= <default>];

• Booleans take true or false as value.

15

Adding Logic

• Now that we have IOs, we can
use them in the architecture of
to run some logic.

• In this exemple, we set the
output to the logic AND of the
two inputs.

16

Signals and Assignation
• Apart from IOs, it is also

possible to create local
signals inside an entity.

• The declaration of local
signals is done before the
begin of the architecture.

• Signals are assigned using the
“<=“ operator.

17

Back to IOs
• Input signals can only be found at the right-hand

side of the assignment operator.

• Output signals can only be found at the left-hand
side of the assignment operator.

• If you want to use the value of the output signal,
you should create a temporary local signal to hold
that value.

18

Top Level
• As previously stated, the Top Level is an entity like

every other, except that its IOs are directly
connected to the pins of the FPGA.

• To set a module as Top Level, right click the file and
select “Set as Top Module…”.

• For a project to compile, we need to assign each
signal of the Top Level with a pin. To do so, we will
need to populate the UCF file.

19

UCF Pin Constraints

• Each signal is mapped to a pin. The
pin number can be found in the
datasheet or on the development
board next to each component.

20

Exercise

• Write a VHDL top level entity that takes an input
signal and forwards it on an output bus of two
elements.

• Implement this on the FPGA using a push button as
source and two LEDs as output.

21

Combinatorial Logic

Logic Operators
• All logic operators can be

used except for nxor.

• To select an element in a
std_logic_vector, use
parentheses:

• with a range to make
another std_logic_vector;

• with an index to make a
std_logic.

23

With

• The with statement
assigns a signal
according to the value
of another signal.

• It can be seen as a
multiplexer.

24

When

• With the when
statement the
assignment of a signal
depends upon a
condition and not only
the value of a signal.

25

Conditions

• Conditions are combinations of one or more tests.

• Tests on signals use the following operators: =
(equal), /= (not equal), <, >, <=, >=.

• Conditions are glued together using logic operators
(and, or, not, …).

26

Example: Buttons to LEDs
• This example summarises

what we learned until now:

• Types

• Assignation

• Logic & Test operators

• With / when statements

27

Exercises
• Write a code that connects the status of each push

button (pressed or released) to an LED.

• For each LED, create the following logic: the LED is
controlled by a push button, but only if a switch is ON.
Otherwise it stays OFF.

• Write a script that turns on the LEDs if more than 4
switches are turned ON.

• For each exercice, write the schematic diagram using
fundamental logic blocks.

28

Solution

29

Mathematics

Signed & Unsigned

• The use ieee.numeric_std.all adds a new type to
VHDL:

• signed / unsigned, which is an std_logic_vector
that acts like an integer

• signed / unsigned makes it easier to add and
compare std_logic_vectors to integers.

32

signed / unsigned
signal <name> : unsigned(<range>) [:= <default>];

• Signed / unsigned are std_logic_vectors that
behave like integers.

• They are assigned like std_logic_vectors (double
quotes), but can be incremented with integers are
compared to them.

• unsigned_signal <= unsigned_signal + 5;

33

Mathematical Operators
• The available mathematical operators are: +, -, *, /, abs,

mod, rem.

• But you should be careful using them!

• The only ones I recommend using are +/- and abs as they
can be easily translated to logic. * is also acceptable.

• +/-, * can only be used with integers and signed/
unsigned.

• abs can only be used with signed/unsigned.

34

Type Casting

35http://www.bitweenie.com/

• Going from
std_logic_vector to
signed/unsigned is a
simple cast operation
(no cost).

• Going from integer to
any other type is a
conversion function
(cost).

http://www.bitweenie.com/

Exercise

• Use the switches as input, convert it to an
unsigned, add 5 to the value, and show the result
on the LEDs.

36

Solution

37

Generics & Generates

Generics

39

• Like C’s #define, VHDL has
parameters that can be set
before the generation of the
design.

• They are called generics.

• Generics take a default
value which can then be
overwritten when the entity
is used.

For Generate
• VHDL also offer the

possibility to duplicate a
code using a for loop. For
loops in VHDL are not
iterative processes like in
C. They simply duplicate
code that will be run in
parallel.

• The example on the left is
identical to the previous
example with the LEDs

40

If Generate

• An if generate
statement also exists
which generates the
block only if the
condition is fulfilled.

41

Exercise

• Do the following exercise using a For Generate
loop.

• For each LED, create the following logic: the LED is
controlled by a push button OR by a switch (logic
OR of the two).

42

Solution

43

Using Entities

Using Entities
• Let’s say we have an entity as

shown on the left which
implements a logical and of
two signals.

• This entity can be used in
other entities all over the
design.

• To do so, we will instantiate
the entity.

45

• When instantiating an entity, a
mapping between signals in the
caller and the called module
should be done.

• In this example, we implement  
f = a AND b AND c

• Note that the instances are totally
distinct from one another.

46

Instances

Instances and Generics

• Generics can also be set when
instantiating an entity.

• The values of the generics are
only applied to one instance
and not globally.

47

Project Structure
• When instantiating entities, the

structure of your project will change.

• A tree of entities will appear.

• In this case, the LogicalAND entity
doesn’t exist so an interrogation mark
is displayed instead of the entity
itself.

48

VHDL to FPGA

RTL and Technology
Schematics

• If you want to visualise your design at the hardware
component level, run the “Synthesize - XST” tool
and then select the “View RTL Schematic” or “View
Technology Schematic” options.

• The RTL schematic is your design translated in
building blocks (logic gates, multiplexers, …).

• The technology schematic is your design adapted
for the FPGA you are working with. It will only use
ressources that are available.

50

LEDs example

• This is the result we get if we
use the design of the LEDs
with the generate conditions.

51

RTL

Technology

