
FPGA Design
Part IV - State Machines & Sequential VHDL

Thomas Lenzi



Objective

• We learned how to use an FPGA to code 
combinatorial logic in VHDL. 

• We will now focus on sequential logic and learn 
how to implement complexer functions in VHDL. 

• But first we will have a look at state machines which 
are useful to control systems.

2



State Machines



State Machines
• A state machine is a construction in which a system 

is described by states in which it can be. 

• In every state, the actions taken are clearly defined 
and solely depend on the state of the machine. 

• The machine can go from one state to another 
using clearly defined conditions.  

• The transition between state cannot influence the 
actions of the machine.

4



Diagrams
• State machines can be illustrated using diagrams.

5

State 1 State 2

State 3State 4

When button A is pushed

When buttons A and B are pushed

When button B  
is pushed

Always

Always

Otherwise Otherwise



Exercise

• Draw the diagram of a fruit vending machine that 
only accepts 1€ and 0.50€ and returns money if the 
user gave too much. 

6



Solution

Waiting for money

7

Give money back

Give fruit
Gave 1€

Gave 0.50€

Inserted 1€

Inserted 0.50€

Nothing happens More than 2€

More than 2€

Less than 2€

Less than 2€
Exactly 2€

More than 2€
Always



Processes



Processes
• In order to code sequential statements in 

VHDL, you need to use processes. 

• Statements in a process will not be executed 
sequentially, they will simply be interpreted that 
way and translated into appropriate logic by the 
synthesiser (do not compare this to C code). 

• Processes take a sensitivity list as parameter. 
Every time one of the signals in the list 
changes, the process is fired. 

9



Variables & Signals I
• When using processes, you can create 

variables at the beginning of the 
process. 

• The difference between signals and 
variables is that signals are 
concurrently assigned, while variables 
are sequentially assigned. 

• The value of the variable is saved 
between the various times the process 
is fired.

10



Variables & Signals II
• In this example, the process will fire 

every time the clock changes, but the 
IF statement requires it to be high. 

• The variable is first set to ‘0’ and then 
inverted. Therefore, the output will 
always be ‘1’. 

• The signal is first set to ‘0’, but this 
instruction is overwritten by the 
following one. The signal will thus 
oscillate.

11



Variables & Signals III

12



Propagation delays and 
variables

• You must use variables with care as they will 
produce cascading logic.  

• When running at low speed, the delay induced by 
this logic is not significant compared to the clock 
speed. But when using higher clock speed, you 
must ensure that the delay is less than the clock 
period.

13



Sequential Statements



If / elsif / else

• The if / elsif / else 
statements have a 
similar use as in C.  

• When encoding 
conditions, be sure to 
cover all possible cases!  

15



Case
• The case statement has a 

similar use as in C.  

• Each possibility can hold 
multiple sequential 
statements. 

• When encoding conditions, 
be sure to cover all possible 
cases!  

16



For & While

• Processes can use For and While 
loops to duplicate logic, similarly to 
the For Generate statements. 

• Not every piece of code using For 
and While statements can be 
translated to logic. ISE will issue an 
error when this happens.

17



Using the Clock
• To use the clock as timer, you have to 

make use of the rising_edge function. 
It will ensure that the process is fired 
when the clock changes from low to 
high.  

• Using this function in designs will 
result in the use of DFFs to buffer 
values. 

• This is the proper way to code state 
machines.

18



Exercise

• Design a fruit vending machine that only accepts 
1€ and 0.50€ (represented by two buttons) and 
returns money if the user gave too much. Fruits 
cost 2€.

19



Solution

20



Packages



Packages
• Next to regular VHDL entities, you can also create 

Packages. 

• Packages hold functions, procedures, custom data 
types, constants, etc. They are toolboxes that 
contain helping tools. 

• To create a VHDL package, add a new file and 
select “VHDL Package”.

22



Package Structure
• Packages are decomposed in two 

parts: header and body. 

• The header contains the custom data 
types, constants, and the functions 
and procedures headers. 

• The body contains the logic of the 
functions and procedures.

23



Types and Constants

24

• In VHDL, you can create new types: 

• subtype is simply an alias to an 
existing type; 

• record is similar to a struct in C and 
holds multiple signals; 

• array defines an array of elements of 
a given type; 

• enumerate defines a list of values a 
signal can hold. 

• You can also define constants that can 
be used in your design.



Functions

25

• All the parameters of a function are 
inputs. 

• A function can only return one 
value. 

• Statements in a function are 
sequential.



Procedures

26

• Procedures apply logic to signals. 

• The parameters of a procedure can 
be in/out signal/constants/
variables.



Using Packages
• To use your package 

you need to include if 
using the use statement. 

• Types can then be used 
for signals. 

• Functions and 
procedures can then be 
called.

27



Back to State 
Machines



A Better State Machine

• To allow for better optimisation and clarity, the state 
machine should respect the following rules: 

• The code that dictates the transitions between 
states and the code that acts depending on the 
state the machine is in should be separate. 

• The state variable should be an enumerate type.

29



Solution

30

State transitions State actions



Simulations



Test Benches
• Test Benches are VHDL entities that drive signals 

into a Unit Under Test (UUT). 

• They simulate components that are not in the FPGA 
or that are not yet implemented (clocks, 
communication protocols, …). 

• Test benches can only be used in simulation and 
cannot be synthesised.

32



Create a Test Bench
• Go to “Project > New Source…” 

• Select “VHDL Test Bench” and give it a name with a .vhd extension, then click 
“Next” 

• On the next window, select the file for which you want to create a test bench 
and click “Next” and then “Finish”

33



ISE Simulation Environment
• To use the test bench, you need to 

switch to the simulation environment 
by selecting the Simulation view. 

• In this environment, you will see that 
a new file is present and that it 
includes the entity you previously 
selected. 

• The tools on the bottom of the 
screen also changed.

34



Structure of a Test Bench
• The logic inside a test bench uses the 

statements we previously reviewed, but it 
adds the possibility to use the wait for 
statement to wait for a given amount of 
time. 

• In this example, the clock will be generated 
by the clk_i_process process which 
changes the value of the clock every 5 ns. 

• Test benches recognise clock signals when 
their name start with clk and automatically 
create a process to generate them.

35



Code to Analyse

• The previous test bench will be 
used to analyse the following 
code. 

36



Generating Signals
• To analyse our logic, we will use the following 

code: 

• reset_i will be held high during 100 ns and then 
put low; 

• a_i will then go high for 6 ns; 

• b_i will be high for 6 ns; 

• both a_i and b_i are put back low. 

• The final wait statement without a specific duration 
insures that the process will never be ran again.

37



Running the Simulation

• To run the simulation, select the test bench in the 
top left menu, and double-click on “Simulate 
Behavioural Model”. 

• A new window appears from the ISim program.  

• ISim plots the input and output signals of the top 
level.

38



Simulation Result

• Using the controls to zoom out, you can observe 
the results of the simulation. 

• As expected, c_o is high only when both a_i and 
b_i are high at the rising edge of clk_i.

39



Exercise

• Re-write the code of a the vending machine using 
types and create a test bench for it.

40



Best Practice VHDL



Common
• The file’s name is the entity’s name 

• Use test benches whenever possible 

• Use named signal mapping for entities 

• When using case, when, … cover all the possible 
conditions 

• Use constants when possible 

• Avoid variables and use signals

42



IOs

• Only use IN and OUT modes 

• Add sufixes _i or _o to inputs and outputs 

• Only use std_logic, std_logic_vector, or (un)signed 
signals or records using them as IOs

43



Vectors

• Vectors always start at 0 

• Vectors are always going downwards

44



Clocks and Resets
• Use synchronous resets 

• Resets are active high 

• Initialise all the signals at reset 

• Use the rising edge of the clock 

• Synchronous processes only have the clock in their 
sensitivity list

45



Communication 
Protocols



UART

47

• The Universal Asynchronous Receiver/Transmitter (UART) 
is a protocol that uses two wires: one to receive and one to 
transmit data. 

• The clock is not transmitted thus both parties must agree 
on the sampling frequency of the signal (9600 Hz is the 
most common).



I2C
• In I2C, a master controls multiple slave by addressing them. 

• The master and slaves use the same data line (sda) to 
transmit information that is synchronised to a clock line (sck). 

• When a module is not using the lines to transmit data, they 
should pull it to high impedance in order to avoid shorts.

48



SPI
• SPI uses a Chip Select SS# bus 

to allow the master to select the 
slave it wishes to address. 

• The master sends the clock 
SCLK and data MOSI (Master 
Out Slave In) to the slaves which 
respond using a separate wire 
MISO (Master In Slave Out).

49



Exercise 
Using the 7-segments 

display



Exercise

• Develop a VHDL entity that will control the 7-
segment display.  

• It should take four 4-bit busses as input and 
represent their hexadecimal value on the four digits 
of the display.



7-segments Display
• We want to control the 

7-segments display and 
be able to display 
hexadecimal characters 
on it. 

• The only thing the user 
has to do is set 4 buses 
(one per digit) which 
hold the values he 
wants to display.

52



Questions

53

What IOs do we need to add to our design?

Is this a sequential or combinatorial design?

Do we need a state machine? If so, what are 
the states?

What inputs drive the design?



Step 1: IOs
• clk_50MHz_i : input clock 

• reset_i : input reset 

• x0_i, x1_i, x2_i, x3_i : values to print 
on the segments 

• seg_o : output data that will be sent 
to the display 

• dp_o : status of the point LED 

• an_o : select the active segment

54



Step 2: Clock

• Divide the input clock 
from 50 MHz to 1 kHz. 

• Using a counter, we 
generate a 1 kHz “clock”. 

55



Step 3: States

• We will use 4 states, one for 
each active anode. 

• The transition between states 
will be done every 1 ms.

56



Step 4 : Data Translation
• The 7-segments 

display uses a data 
bus of 7 bits while 
the user uses 4 bits 
representing a 
number. 

• We have to convert 
the number to the 
display.

57



Step 5 : Data Signalling

• Finally we need to transfer the 
data to the display.

58


