FPGA Design

Part IV - State Machines & Sequential VHDL

Thomas Lenzi

Vrije UNIVERSITE
Universiteit LIBRE
Brussel DE BRUXELLES

Objective

e We learned how to use an FPGA to code
combinatorial logic in VHDL.

 We will now focus on sequential logic and learn
how to implement complexer tunctions in VHDL.

e But first we will have a look at state machines which
are useful to control systems.

State Machines

State Machines

A state machine is a construction in which a system
IS described by states in which it can be.

In every state, the actions taken are clearly defined
and solely depend on the state of the machine.

The machine can go from one state to another
using clearly defined conditions.

The transition between state cannot influence the
actions of the machine.

Diagrams

e State machines can be illustrated using diagrams.

Otherwise Otherwise

S When button A is pushed)
State 1

> State 2

A

When button B

Always is pushed

v

State 4 < State 3

Exerclse

* Draw the diagram of a fruit vending machine that
only accepts 1€ and 0.50€ and returns money if the
user gave too much.

Nothing

Solution

Less than 2€

T

aiting for money

\

—_

Gave 1€

Gave 0.50€

/

Less than 2€

Give money back

Give fruit

Processes

Processes

* |n order to code sequential statements In
VHDL, you need to use processes.

e Statements in a process will not be executed

sequentially, they will simply be interpreted that
way and translated into appropriate logic by the
synthesiser (do not compare this to C code).

* Processes take a sensitivity list as parameter.

Every time one of the signals in the list
changes, the process is fired.

9

Variables & Signals |

 \When using processes, you can create
variables at the beginning of the
process.

processia, b)

* The difference between signals and

variable tmp : std logic := '0';

variables is that signals are
concurrently assigned, while variables
are sequentially assigned.

e The value of the variable is saved
between the various times the process
IS fired.

10

Variables & Signals ||

* |n this example, the process will fire
every time the clock changes, but the

process(clk) ”: Statement reqU|reS |t tO be hlgh
e The variable is first set to ‘O’ and then
if (clk = '1') then . \
inverted. Therefore, the output will
Vér t= not wvar; always be (.1 !.
* The signal is first set to ‘0’, but this

instruction is overwritten by the
following one. The signal will thus
osclillate.

11

Variables & Signals |l

orary ieee;

4

1
u

L
-

0
v}

11; TripleAND: 1

entity TripledND is buf

po[f_ﬂ[
a : in =ctd logic vector (2 downto 0); ! ‘
b : out st ‘ 3 a_2_|1BUI obuf
C . out
): | b OBUI
end TriplelND;

n00001
archiceccure Behavioral of TriplelAND is

signal sig : std fic := '1';
begin
process(a)
variable var : std gic := '1';
hegin
for I in O to 2 loop
21g <= 31g and a(l):;
var := var and a(l):;

end loop:

end process;

TripleAND

end Behavioral;

Propagation delays and
variables

* You must use variables with care as they will
produce cascading logic.

 \WWhen running at low speed, the delay induced by
this logic is not significant compared to the clock
speed. But when using higher clock speed, you
must ensure that the delay is less than the clock

period.
U1 U2
- D Q—i LOGIC }— D Q-

—> —>

13

Sequential Statements

f / elsif / else

processia, b)

e Theif/ elsit/ else
K (s T andn =t e statements have a
o similar use as in C.
* When encoding
conditions, be sure to
cover all possible cases!

15

Case

e [he case statement has a

process(a, h) Slmllar use aS In C

variable tmp : std logic vector (1l downto 0);

* Each possibility can hold

" shen 17 > multiple sequential

when 710" | 7017 %> statements.

* \When encoding conditions,

be sure to cover all possible
cases!

16

process(sw_1i)

variable J : integer := 0;

begin

for I in 0 to S5 loop

leds o(I) <= sw_i(I);

end loop’
J = 0;

while (J < 8) loop

leds o(J) <= sw_i(J):;

J = J + 1;

end loop;

end process;

—or & While

e Processes can use For and While
loops to duplicate logic, similarly to
the For Generate statements.

* Not every piece of code using For
and While statements can be
translated to logic. ISE will issue an
error when this happens.

17

Using the Clock

* [o use the clock as timer, you have to
make use of the rising_edge function.
It will ensure that the process is fired

variable led : std logic := '0'; When the ClOCk Changes from |OW to
begin r]igyrw.

if (rising edge(clk)) then

process(sw_1)

led := not led;

* Using this function in designs will
result in the use of DFFs to buffer
values.

leds o <= (others => led):

* This is the proper way to code state
machines.

18

Exerclse

* Design a fruit vending machine that only accepts
1€ and 0.50€ (represented by two buttons) and
returns money it the user gave too much. Fruits

COSst 2€.

19

Solution

process(clk)

variable state : integer range 0 to 4 := 0;
variable money : unsigned(? downto 0) := (others => '0');
begin

if (rising edge(clk)) then
-— Waiting
if (state = 0) then
fruit <= '0';

-— Give fruit
elsif (state = 3) then
fruit <= '1';

Foomuch <= '0'; if (money = 200) then
if (add 1 = 'i'] then roney := 0;
elsiit?:Zd.US ; '1') then srave 1= 07
— else
state := 2; state := 4;
else end if;
gtate = 02 -— Return money
end if; elsif (state = 4) then
-= +1 toomuch <= '1';
elsif (state = 1) then money 0:
money := money + 100; state := 0:
if (money >= 200) then -- Safety else
state := 3; else
else money := 0;
state := 0; state := 0
end 1if; end if;
-- +0.5 end if;
elsif (state = Z) then end process:
money := money + 50;
if (money >= 200) then
state := 3;
else
state := 0;
end if;

20

Packages

Packages

* Next to regular VHDL entities, you can also create
Packages.

 Packages hold functions, procedures, custom data
types, constants, etc. They are toolboxes that
contain helping tools.

* Jo create a VHDL package, add a new file and
select "VHDL Package”.

22

Package Structure

* Packages are decomposed in two
parts: header and body.

use IEEE.STD LOGIC 1164.all;

package my_ package 1is

- Prototypes * [he header contains the custom data
types, constants, and the functions
and procedures headers.

end ny_ package’

* The body contains the logic of the
functions and procedures.

23

Types and Constants

library IEEE;
use IEEE.STD_LDGIC_llE%.all;

package my package is

subtype wvector 8§ is std logic wvector (7 downto 0);

type my type 1s record
sigl : std logic;

sigz H std:logic vector (7 downto 0);

end record;

* In VHDL, you can create new types:

e subtypeis simply an alias to an
existing type;

e recordis similar to a struct in C and
holds multiple signals;

type array4x8 is array(0 to 3) of std logic vector (7 downto 0);

type enuwerate is (VALUE 0, VALUE 1, VALUE 2Z):;

constant number_of_entities :

end ny_ package’

package body my package 1is
—-— Bodies

end my package;

integer :

e array defines an array of elements of
a given type;

e enumerate defines a list of values a
signal can hold.

e You can also define constants that can
be used in your design.

24

library IEEE;

use IEEE.STD LOGIC 1164.all:

package my package is

function my functionf

signal varl : std logic;
signal varz : std logic

) return std logic;

end my_ package’

package body ny_ package is

function my function|

Signal varl : std logic;
Signal wvarZz : std logic

) return std logic is

variable tmp : std logic;

begin

tmp := wvarl and wvarz;

return tup;
end function;

end my_ package’

Functions

* All the parameters of a function are
INnputs.

* A function can only return one
value.

e Statements in a function are
seqguential.

25

library IEEE;
use IEEE.STD LOGIC 1164.all;

package my package 1is

procedure my procedure |

constant varl : in std logic;

Signal varz : in std logic;
Signal var3 : out std logic

)

end my package;

package body my package 1is

procedure my procedure (

constant varl : in std logic;

signal varz : in std logic;

Signal var3 : out std logic

1 is
variable tmp : std logic;
begin
tp := varl and wvari;
vard <= twmp;
end procedure;

end my_ package;

Proceqgures

* Procedures apply logic to signals.

 [he parameters of a procedure can
be in/out signal/constants/
variables.

20

o Using Packages

use ieee.std logic 1164.all;

library work;
use work.my package.all;

* Jo use your package
archit:cture'Behavioral of toplevel is you need tO inC|Ude if
signal vec :@: wvector 8§ := (others => '0'); USing the use Statement_

Signal rec : my_type;

Signal table : array4xgS : (others => (others => '0'));

* Types can then be used
signal s1, s2, =3, s4 : std logic; for Signals.

begin

Signal enum : enumerate @

veco (1l downto 0) <= "11";

* Functions and
table (0) (3 downto 0) <= x"F"; procedures Can then be
enwn <= VALUE 1; Ca”ed .

83 <= my _function(sl, s2);

rec.sigl <= '0';
rec.sig2 <= x"AE";

my procedure(sl, s2, s4);

27

end Behawvioral:

Back to State
Machines

A Better State Machine

* Jo allow for better optimisation and clarity, the state
machine should respect the following rules:

* [he code that dictates the transitions between
states and the code that acts depending on the
o

ate the machine is in should be separate.

* [he state variable should be an enumerate type.

29

Solution

architecture Behawvioral of ex4 is

type states is (WAITING, ADD 1, ADD 05, CHECK, GIVE, TOOMUCH):

Signal state : states := WAITING;

begin

processi(clk)
begin
if (rising edge(clk)) then
case state 1is
when WAITING =>

if (add 1 = '1') then
state := ADD 1/

elsif (add 05 = '1') then
state := ADD 05;

elsd
state := WAITING;

end 1if;

when ADD 1 | ADD 05 =>
state := CHECK;

when CHECK =>
if (money = 200) then

state := GIVE;
elsif (money > 200) then
state := TOOMUCH;
else
state := WAITING:;
end 1if;
when GIVE =>
state := WAITING;
when TOOMUCH =>
state := GIVE;
when others =>
state = WAITING;
end case;

end 1if;
end process;

State transitions

30

State actions

processiclk)
begin

if (rising edge(clk)) then

case state 1is
when WAITING =>
fruit <= '0

toomuch <= '0';
when ADD 1 =>
money := money + 100;
when ADD 05 =>
money := money + 50;
when CHECK =>
null;
when GIVE =>
fruit <= '1';
money := 0;
when TOOMUCH =>
toomuch <= '1';
rmoney := 0;
when others =>
money := 0;
fruit <= '0';
toomuch <= '0';

end case;
end if;
end process;

!
4

Simulations

lest Benches

* Jest Benches are VHDL entities that drive signals
into a Unit Under Test (UUT).

* They simulate components that are not in the FPGA
or that are not yet implemented (clocks,
communication protocols, ...).

* Jest benches can only be used in simulation and
cannot be synthesised.

32

Create a Test Bench

 Go to “Project > New Source...”

o Select “WHDL Test Bench” and give it a name with a .vhd extension, then click
“Next”

* On the next window, select the file for which you want to create a test bench
and click “Next” and then “Finish”

B New Source Wizard x|

Select Source Type
Select source type, file name and its location,

) EMM Fie

€= ChipScope Defindtion and Connection Fle

:"-; Implementation Corstrants Fle

Y 1P (CORE Generator & Archtecture Weard)

(4 MEM File

.~ .

O] Schematic

k| User Document

v Werilog Module

M verkog Test Foture e '

“ad YHOL Module [tb_toplevel.vhd

LB WrOL Library '

(2] YHDL Packaogs Location:
YHOL Test Banch | Z:\Documens\Srippets) Training . |
Embedded Processor

o~

V' add to project

Moee Info I Next > » Cancel 33

|ISE Simulation Environment

view: - {9}} Implementation (* @ Simulation

== ¢ Jo use the test bench, you need to
LS switch to the simulation environment
= [bg 'th_toplevel - behavior - ; - - ;
by selecting the Simulation view.

* |n this environment, you will see that
a new file is present and that it
iIncludes the entity you previously
selected.

¢ No Processes Running

No single design module is selected.

@‘5*%H‘m;;:::;gChe?kw * The tools on the bottom of the
' screen also changed.

34

Structure of a Test Bench

-— ¢lock period definitions

constant clk i period : time := 10 ns;

—-— 1lnstantiate the unit under test
uut: entity work.toplewvel
port map |

clk 1 => clk 1,
reset 1 => reset 1,
a i => a i,
b i => b 1,
C_ O => Cc_ 0
)
-— ¢lock process definitions
clk i1 process :process
begin

clk i <= '0';

wait for clk i period/2;

clk i <= '1';

wait for clk i period/2:;
end process;

-— 3timulus process
Stim proc: process
begin

—— hold reset state for 100 ns.

wait for 100 ns;
walt for clk i period*10;
—-— 1insert stimulus here
wait;

end process;

[uut)

* The logic inside a test bench uses the
statements we previously reviewed, but it
adds the possibility to use the wait for
statement to wait for a given amount of
time.

* |n this example, the clock will be generated
by the clk_i_process process which
changes the value of the clock every 5 ns.

* Test benches recognise clock signals when
their name start with c/k and automatically
create a process to generate them.

35

Code to Analyse

entity toplevel is

port |
clk 1 : in std logic;
reset_1 : in std logic;
a 1 : in std logic;
b i : in std logic;
c_0 : out std logic

): . .
* The previous test bench will be
architecture Behavioral of toplevel is used tO analyse the fO”OWing

begin
process(clk i)
begin B COde.
if (rising edge(clk 1)) then
if (reset i = '1l') then
c o <= '0';
else
¢ 0o<=aiandb i;
end if;
end 1if;

end process;

end Behawvioral:;

36

Generating Signals

* To analyse our logic, we will use the following

code:
-— stimalus process] . . .
SUimproc: process e reset | will be held high during 100 ns and then
=P put low;

bh i «<= '0"';
wait for 100 ns;

1 - 1 L '] [] "
wait Zor cik 4 period * 40; e a_/will then go high for 6 ns;
ai<="'1';
wgit for clk i period
b i<="'1"';
walt for clk i period
a i <= '0';
wait for clk i period
b i<='0"'; . .
waits * both a_/and b_i are put back low.

end process;

+
(0]
AT

+
L]
AT

* pb_iwill be high for 6 ns;

+
(]
AT

e The final wait statement without a specific duration
iInsures that the process will never be ran again.

37

Running the Simulation

* Jo run the simulation, select the test bench in the
top left menu, and double-click on “Simulate
Behavioural Model”.

* A new window appears from the ISim program.

* |Sim plots the input and output signals of the top
level.

38

Simulation Result

* Using the controls to zoom out, you can observe
the results of the simulation.

* As expected, c_ois high only when both a_jand
b_i are high at the rising edge of clk_1.

Exerclse

* Re-write the code of a the vending machine using
types and create a test bench for it.

40

Best Practice VHDL

Common

The file's name is the entity’s name
Use test benches whenever possible
Use named signal mapping for entities

When using case, when, ... cover all the possible
conditions

Use constants when possible

Avoid variables and use signals

42

|Os

 Only use IN and OUT modes
 Add sufixes _I or _o to inputs and outputs

* Only use std_logic, std_logic_vector, or (un)signed
signals or records using them as 10s

43

Vectors

* \ectors always start at O

* Vectors are always going downwards

44

Clocks and Resets

Use synchronous resets

Resets are active high

Initialise all the signals at reset
Use the rising edge of the clock

Synchronous processes only have the clock in their
sensitivity list

45

Communication
Protocols

UART

 The Universal Asynchronous Receiver/Transmitter (UART)
IS a protocol that uses two wires: one to receive and one to
transmit data.

* [he clock is not transmitted thus both parties must agree

on the sampling frequency of the signal (9600 Hz is the
most common).

Asynchronous serial transmission (R5232)

Sampling Points

RN

{Bit 0 Bit1:Bit2iBit 3iBitaiBits|Bit6Bit7]

Start Bit 8 Data Bits 1 Stop Bit

Lowest Bit
47

12C

In 12C, a master controls multiple slave by addressing them.

The master and slaves use the same data line (sda) to
transmit information that is synchronised to a clock line (sck).

When a module is not using the lines to transmit data, they
should pull it to high impedance in order to avoid shorts.

o
o
o
V
MRD sgc;\
]]] —SCL
HC ADC DAC HC
Master || Slave || Slave || Slave

Start Compass uses address 0xC0 White The register num ber that Repeated
brt\ 1 14 o 0 0 0 0 o0 you want to read from Sta.r_t_:b'rt
_'-l [A7 [A5 A5 | A4 A5 [A2 A1 RMY ACK [D7 [DE|D5|D4 (D3 [D2]D1|D0 BCK | Li
Tz gs 4 s e L7 s LJe T2 g4 s e g7 s Ly _
Write address with bt0 set - OxC1) '
1 1 o 0o 0 0 o0 1 Read one or more regsters Stg.p":brt
T [arlas[as[aalaz]aza1 Rawlack [p7]os[ps[palp3[p2 o1 ook 1l

Lzl =l Jal IsL e L7 el Jol___[1l Jz1l=1Jal [sl s [z Jel Jal__ [¢

48

SP

SCLK SCLK
MOSI MOSI SPI
SPI MISO |« MISO Slave
Master SS1

= - SPl uses a Chip Select SS# bus

Yy

v
o

+—» SCLK

g (e to allow the master to select the
slave It wishes to address.

—»| SCLK

—»| MOSI SPI
MISO Slave
—P SS

e [he master sends the clock
SCK = ALALAAAALA— SCLK and data MOSI (Master

55 g Out Slave In) to the slaves which
cle # I TS ss T s - :
o s reraee | respond using a separate wire

IR MISO (Master In Slave Out).

49

EXEercise
Using the 7-segments
display

Exerclse

* Develop a VHDL entity that will control the 7-
segment display.

* |t should take four 4-bit busses as input and
represent their hexadecimal value on the four digits

of the display.

/-segments Display

Ar|41 Alluz Ah|l3 Allu ﬁ? :
1 |
N

 \We want to control the
/-segments display and
be able to display
hexadecimal characters

our-digit Seven | DP '
gegmir?tt[)sisplay on It
Individual cathodes .
: Refresh period = 1ms to 16ms * The Only thlng the USGI’
<—>(\ Digit period = Refresh / 4 haS to do lS Set 4 buses
ANO ./ AN C .
g — "/ (one per digit) which
AN2 _____/ hold the values he
AN3 \ S

wants to display.

Cathodes _¥_Digit0_X_ Digit1_X_ Digit2_X_ Digit3 X_

52

Questions

What 10s do we need to add to our design?

Is this a sequential or combinatorial design?

What inputs drive the design?

Do we need a state machine? If so, what are
the states?

53

Step 1: 10s

e clk_50MHz_lI : input clock

e reset_i: Input reset

entity seg 1is '
port([.
T — XO_I, x1_1, Xx2_1, x3_I : values to print
reset_1i : in std_logic;
x0 i : in std_logic_vector(3 downto 0); On the SegmeﬂtS
x1_i : in std_logic_vector(3 downto 0);
x2_ i : in std_logic_vector(3 downto 0);

x3_1i : in std_logic_vector(3 downto 0);
seg_o : out std_logic_vector(6 downto 0);

s ey 8 * sSeg_o : output data that will be sent

an_o : out std_logic_vector(3 downto @)

); to the display

end seg;

e dp_o : status of the point LED

* an_o : select the active segment

54

Step 2: Clock

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

architecture Behavioral of seg is

signal counter : unsigned(15 downto @) := (others => '0');

* Divide the input clock
D A from 50 MHz to 1 kHz.

begin
if (rising_edge(clk_50MHz_i)) then
if (reset_i = '1') then

counter <= (others = '0');

if (counter = 50_000) then [US”’]Q a cou ﬂter, we

counter <= (others = '0');

generate a 1 kHz “clock”.

counter <= counter + 1;
end 1if;
end if;
end 1if;
end process;

else

end Behavioral;

95

Step 3: States

type states is (AN@, AN1, AN2, AN3);

signal state : states := ANO;

process(clk_50MHz_i) . f
begi o
T We will use 4 states, one for
if (reset_i = '1') then .
counter <= (others = '0'); each active anode.
L
e Seif (counter = 50_000) then
counter <= (others = '0');
case state 1is
when ANO => state <= AN1;

rebamgsnpRll o [No transition between states

when AN2 => state <= AN3;
when AN3 => state <= ANO; "
when others => state <= ANO; Wl” be dOne every 1 mS
end case;
else
counter <= counter + 1;
end if;
end 1if;
end if;
end process;

56

Step 4 : Data Translation

type arrayd4x4 is array(@ to 3) of std_logic_vector(3 downto 0);
type arraydx7 is array(® to 3) of std_logic_vector(6 downto 0);

signal number : array4x4 := (others => (others == '0')); * The 7_Segment8

signal segments : array4x7 :

(others = (others = '0'));

display uses a data
nunber(e) < x0_i bus of 7 bits while

number(1)
number(2)

e the user uses 4 bits

translate_loop: for I in @ to 3 generate

representing a
" o0000 when ~o000rs 0 numbetr.

“1111001" when "0001",
"9100100" when "0010",
"9110000" when "0011",
"9011001" when "0100",
"9010010" when "0101",
"9000010" when "0110",
“1111000" when "0111",
"'0000000" when "1000",

’

’

’

 \We have to convert
the number to the
display.

"9010000" when "1001"
"9001000" when "1010"
"9000011" when "1011"
"1000110" when "1100"
"9100001" when "1101"
"9000110" when "1110"
"9001110" when "1111"
“"1111111" when others;

S/

end generate;

Step 5 : Data Signalling

process(clk_50MHz_i)
begin
if (rising_edge(clk_50MHz_i)) then
if (reset_i = '1') then
an_o <= "1111";
seg_o <= (others = '1');

else
case state is
when ANO =>
an_o <= "1110";
seg_o <= segments(9);

e AT = * Finally we need to transfer the

an_o <= "1101";

whenszai()::: segments(1); data -tO the d ISplay

an_o <= "1011";
seg_o <= segments(2);
when AN3 =
an_o <= "0111";
seg_o <= segments(3);
when others =
an_o <= "1111";
seg_o <= (others == '1');
end case;
end if;
end 1if;
end process;

58

