
FPGA Design
Part VI - Advanced Topics

Thomas Lenzi

High-Speed Design
Considerations

Primitives

3

• It is possible to implement entities that
represent the building blocks of the FPGA.

• Those entities are called Primitives.

• Each FPGA family has its own set of
primitives which are listed in user guides.

• Using primitives can be useful in certain
cases when a specific function is needed
(clock multiplexing, …) or when you want to
optimise your design beyond what ISE does.

Propagation Delays
• Every component in the FPGA adds delay to the

signal propagation.

• If you are working at high speed, the delay
between the entry and exit point of your logic
should be shorter than the period of the clock.

• If this is not the case, you will encounter undefined
behaviour.

4

Smaller Logic

• To run at high speed, you need to break down your
logic.

• Instead of comparing two 32 bits numbers in one
clock cycle, which requires 11+2+1 LUTs
(cascaded), you could spread the comparaison
over three clock cycles.

5

Buffering
• Insert DFFs in the logic to allow for faster clock speeds.

• If each inverter adds a delay of 5 ns to the logic, your
clock will only be able to run at a period of 10 ns in the
first case, while it can run at a period of 5 ns in the
second one.

6

Example: 2x8bits
comparator

7

• Stage 1:  
5 LUTs, 1 DFF

Example: 2x8bits
comparator

8

• Stage 1: 
4 LUTs, 4 DFFs

• Stage 2: 
1 LUT, 1 DFF

Pipelining
• Splitting your

processes in multiple
tasks doesn’t mean
your code will run less
efficiently.

• You can for example
implement pipelining,
which allow two events
to be processes at the
same time by your
machine.

9

How to Pipeline
• Do not make a blocking state machine in which only one

event can be processed.

• Transitions between states should be done at each clock
cycle so that events can follow one another.

• One process per action can help you visualise the workflow.

• Process data even if the input data is not valid. Let the
machine run.

• Use a flag that is carried along the pipeline to indicate if the
data is valid.

10

Multiplexing
• If pipelining is not an option

(task too complex to
breakdown), you can
consider multiplexing.

• In multiplexing, a system is
duplicated N times (N is
related to the execution time
of the process). At each
cycle, a different system is
fed with information.

11

ii - 1
i

+ 1

IN

OUT

Timing Analysis

Timing Constraints

• You can set constraints on the clock’s period in a
UCF file.

• The tools will translate the design so that they can
match the constraints. If the constraints cannot be
match, an error occurs.

13

Timing Report

• ISE can generate timing reports that analyse your
logic and give you information about the delays,
skews, …

• To start a timing analysis, go to “Tools > Timing
Analyser > Post Place & Route…”. This option will
take into account the path’s delay. The “Post Map”
option will only compute the components delay.

14

Floorplanning

Floorplanning

• Floorplanning allows you to define regions of the
FPGA in which the Xilinx tools should place certain
components.

• You can even go as far as placing the LUTs, DFFs,
… manually.

16

Hierarchical Design

• When synthesising your design, you can tell ISE to
keep the hierarchy of your design.

• This means that the entities will keep their name
and be easier to place on the FPGA. You will be
able to place certain components in given regions.

17

Problem

• Optimise the logic shown on
the left for area by placing
the components manually.

• You should first translate it to
building blocks.

18

Ressources

• View of CLB at page 22: http://www.xilinx.com/
support/documentation/data_sheets/ds312.pdf

• Primitives: http://www.xilinx.com/support/
documentation/sw_manuals/xilinx12_4/
spartan3e_hdl.pdf

• UCF to use: http://iihe.ac.be/~tlenzi/challenge.ucf

19

http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/spartan3e_hdl.pdf
http://iihe.ac.be/~tlenzi/challenge.ucf

