FPGA Design

Part VI - Advanced Topics

Thomas Lenzi

Vrije UNIVERSITE
Universiteit LIBRE
Brussel DE BRUXELLES

X

High-Speed Design
Considerations

and_inst: Iutz 1

generic map(init => "1000'™)

port map |

) 2

i0 => ci(i),
il => dii),
lo => out _and(i)

Primitives

It Is possible to iImplement entities that
represent the building blocks of the FPGA.

Those entities are called Primitives.

Each FPGA family has its own set of
primitives which are listed in user guides.

Using primitives can be useful in certain
cases when a specific function is needed
(clock multiplexing, ...) or when you want to
optimise your design beyond what ISE does.

3

Propagation Delays

* Every component in the FPGA adds delay to the
sighal propagation.

* |t you are working at high speed, the delay
between the entry and exit point of your logic
should be shorter than the period of the clock.

* |f this is not the case, you will encounter undetined
behaviour.

Smaller Logic

* Jo run at high speed, you need to break down your
logiC.

* |nstead of comparing two 32 bits numbers in one
clock cycle, which requires 11+2+1 LUTs
(cascaded), you could spread the comparaison
over three clock cycles.

Buffering

* Insert DFFs in the logic to allow for taster clock speeds.

* |f each inverter adds a delay of 5 ns to the logic, your
clock will only be able to run at a period of 10 ns In the
first case, while it can run at a period of 5 ns in the

second one.

u7 us

e

U6 U4

U1 D‘uz
I>o_DQ D Q >

— —P

v

A4

Example: 2X38DItS
comparator

¢ Stage 1:
5 LUTs,

process(clk)
begin
if (rising edge(clk)) then
if (a = b) then
dout <= '1';

]
(-
m
]

dout <= '0';
end if;

end 1if;

end process;

Timing sunmary:

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cowver 0 paths, 0 nets, and 0 connections

Design statistics: 7
Minimum period: 3.192ns{1} (Maximan frecuency: 313.Z83MHz)

Example: 2X38DItS

comparator

e Stage 1:
4 LUTs,

¢ Stage 2:
. 1 DFF

.-1‘:[."::

-— Stage 1

stagela lut : lut4d

~~~~~

port map (i0 => a(0), il => bi(0), 1iZ => a(l), i3 => b(l), o => stage 1(0))’

stagelb lut : lut4
generic map (init => x"9009")
port map(i0 => a(2), 11 => bi(2), 12 => a(3), 13 => bi(3), o => stage_1(1));

stageld buf : fdce
generic map (init => '0')
port map(C =>» clk, D => Stage_l(S), Q => stage_l_buf(S), CE => '1', CLR => '0'};

Timing sunmary:

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)
Constraints cower 0 paths, 0 nets, and 0 connections

Design statistics: 8
Minimum period: l.5%6ns{1} (Maximan frecuency: 6Z6.566MHz)




Plpelining

Clock Cycle e Splitting your
1 2 3 4 5 6 7 8 9 : :
processes in multiple
tasks doesn’'t mean
your code will run less
efficiently.

Waiting
Instructions

Stage 1: Fetch

Stage 2: Decode

ol I |
ol | |
o] | [

* You can for example
implement pipelining,
which allow two events
to be processes at the
same time by your
machine.

Stage 3: Execute

PIPELINE

Stage 4: Write-back

Completed
Instructions




How to Pipeline

Do not make a blocking state machine in which only one
event can be processed.

Transitions between states should be done at each clock
cycle so that events can follow one another.

One process per action can help you visualise the workflow.

Process data even if the input data is not valid. Let the
machine run.

Use a flag that is carried along the pipeline to indicate if the
data is valid.

10



Multiplexing

* |f pipelining is not an option
(task too complex to
breakdown), you can
consider multiplexing.

0 0 0 * |n multiplexing, a system is
duplicated N times (N Is

related to the execution time
of the process). At each
IN cycle, a different system is
fed with information.

OuT

11



Timing Analysis



Timing Constraints

* You can set constraints on the clock’s period in a
UCF file.

* The tools will translate the design so that they can
match the constraints. If the constraints cannot be
match, an error occurs.

NET "clk"™ TNM NET = "clk";
TINESPEC TS _clk = PERIOD "clk" 20 ns;

13



Timing Report

* |SE can generate timing reports that analyse your
logic and give you information about the delays,

skews, ...

* Jo start a timing analysis, go to “lTools > Timing
Analyser > Post Place & Route...”. This option will
take into account the path's delay. The "Post Map’
option will only compute the components delay.

14



~loorplanning



~loorplanning

* Floorplanning allows you to define regions of the
FPGA in which the Xilinx tools should place certain

components.

* You can even go as far as placing the LUTs, DFFs,
... manually.

16



Hierarchical Design

* When synthesising your design, you can tell ISE to
keep the hierarchy of your design.

* [This means that the entities will keep their name

and be easier to place on the FPGA. You will be
able to place certain components in given regions.

17



Problem

entity challenge is

port(
clk : in std logic;
a : in std logic wvector (7 downto 0);
b : in std logic vector (7 downto 0);
C : in std logic vector (3 downto 0);
d : in std logic wvector (3 downto 0); . . \
e : out std logic vector (3 downto 0O) [ ) O pt th | g h
y imise the logic shown on

end challenge;

architecture behavioral of challenge is the |eft for area by plaCing
the components manually.

process (clk)
bhegin

if (rising edge(clk)) then

i« mmsigneata) - wessnearmn cen ® YOU Should first translate it to

e <= ¢ or d;

ElSEe <= ¢ and d; bu”ding blOCkS.

end if;

end 1if;

end process;

end hehawvioral:

18



Ressources

* View of CLB at page 22: http://www.xilinx.com/
support/documentation/data_sheets/ds312.pdf

* Primitives: http://www.xilinx.com/support/
documentation/sw_manuals/xilinx12_4/
spartan3e_hdl.pdf

 UCF to use: http://iihe.ac.be/~tlenzi/challenge.uct

19


http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/spartan3e_hdl.pdf
http://iihe.ac.be/~tlenzi/challenge.ucf

