Perturbative and colorful lectures on Strong Interactions lecture 1/4

Laurent Favart IIHE - Université libre de Bruxelles

Belgian Dutch German summer school (BND 2022) - Callantsoog (NL)

September 9, 2022

Laurent Favart (ULB)

BND 2022

1 A few words about QCD

- **1** running of α_s
- 2 asymptotic freedom and confinement
- **2** quarks and gluons from e^+e^- annihilation
 - 1 quark electric charges
 - Q quark and gluon spins
 - 8 QCD gauge parameters

3 Structure of hadrons

- elastic scattering
- Ø deep inelastic scattering
- B proton structure functions
- OGLAP evolution equation
- 4 hadron hadron interactions
 - jet production
 - Ø Drell-Yan process

	proton	neutron
mass	938.280 MeV	939.573 MeV
lifetime	stable	$898\pm16~{ m sec}$
charge	+1	0
spin	1/2	1/2
magnetic moment	$2.793 \mu_N$	$-1.913 \mu_{ extsf{N}}$

	proton	neutron
mass	938.280 MeV	939.573 MeV
lifetime	stable	$898\pm16~{ m sec}$
charge	+1	0
spin	1/2	1/2
magnetic moment	$2.793 \mu_N$	$-1.913 \mu_{N}$

lifetime and masses

- $\tau_n \simeq 15 \mbox{ min}$ - very long for wi $n
ightarrow p \ e^- \ ar{
u_e}$

-
$$au_{m
ho} > 10^{33}$$
 y - stable (if free state)

-
$$m_n/m_p = 1.0014$$
 !
 \Rightarrow very similar internal bounding
fields

Ξ.

メロト メポト メミト メミト

	proton	neutron
mass	938.280 MeV	939.573 MeV
lifetime	stable	$898\pm16\text{sec}$
charge	+1	0
spin	1/2	1/2
magnetic moment	$2.793 \mu_N$	$-1.913\mu_{N}$

lifetime and masses

- $au_n \simeq 15 \mbox{ min}$ - very long for wi $n
ightarrow p \ e^- \ ar{
u_e}$

-
$$au_{
m
ho} > 10^{33}$$
 y - stable (if free state)

- $m_n/m_p = 1.0014$! \Rightarrow very similar internal bounding fields

- if
$$m_n \searrow$$
: $He/H \nearrow$ - \nexists stars like \odot
- if $m_n \nearrow$: all atoms unstable (except H)

∃ 990

イロト イヨト イヨト

	proton	neutron
mass	938.280 MeV	939.573 MeV
lifetime	stable	898 ± 16 sec
charge	+1	0
spin	1/2	1/2
magnetic moment	$2.793 \mu_{N}$	$-1.913 \mu_{N}$

magnetic moment

Bohr magneton: $\mu_N = e\hbar/2m_Nc$

we would naively expect $\mu_{\it P}=1$ and $\mu_{\it n}=0$

 \Rightarrow first sign of nucleon charged substructure !

3

イロト イヨト イヨト

- Part 1 -

α_{S} running, asymptotic freedom and confinement

Laurent Favart (ULB)

A 3 >

э

Screening effect in QED

- in QFT the vacuum fluctuates in virtual particle-antiparticle pairs
- in presence of an electric charge, these pairs get polarised
- this leads to an effective charge which depends on the distance to the probe At LO \colon

$$(-i)e_0\gamma^{\mu}\cdot(-i)rac{g_{\mu
u}}{q^2}\cdot(-i)e_0\gamma^{
u}=ie_0^2\gamma^{\mu}rac{g_{\mu
u}}{q^2}\gamma^{
u}$$

with one loop :

$$(-i)e_{0}\gamma^{\mu}(-i)\frac{g_{\mu\rho}}{q^{2}}(-1)\int\frac{d^{4}k}{(2\pi)^{4}}Tr\left[(-i)e_{0}\gamma^{\rho}\frac{i(\not k+m)}{k^{2}-m^{2}}(-i)e_{0}\gamma^{\lambda}\frac{i(\not k-\not q+m)}{(k-q)^{2}-m^{2}}\right](-i)\frac{g_{\lambda\nu}}{q^{2}}(-i)e_{0}\gamma^{\nu}$$

(ペロト 《聞 とく思 とく聞 とくし と

Laurent Favart (ULB)	BND 2022	5 / 24
----------------------	----------	--------

Screening effect in QED

- in QFT the vacuum fluctuates in virtual particle-antiparticle pairs
- in presence of an electric charge, these pairs get polarised
- this leads to an effective charge which depends on the distance to the probe At LO \colon

$$(-i)e_0\gamma^{\mu}\cdot(-i)rac{g_{\mu
u}}{q^2}\cdot(-i)e_0\gamma^{
u}=ie_0^2\gamma^{\mu}rac{g_{\mu
u}}{q^2}\gamma^{
u}$$

with one loop :

$$(-i)e_{0}\gamma^{\mu}(-i)\underbrace{\frac{g_{\mu}}{q}(-1)}_{\text{fermion loop}}\int \frac{d^{4}k}{(2\pi)^{4}}Tr\left[(-i)e_{0}\gamma^{\rho}\frac{i(\not k+m)}{k^{2}-m^{2}}(-i)e_{0}\gamma^{\lambda}\frac{i(\not k-\not q+m)}{(k-q)^{2}-m^{2}}\right](-i)\frac{g_{\lambda\nu}}{q^{2}}(-i)e_{0}\gamma^{\nu}$$

Screening effect in QED

- in QFT the vacuum fluctuates in virtual particle-antiparticle pairs
- in presence of an electric charge, these pairs get polarised
- this leads to an effective charge which depends on the distance to the probe At LO :

$$(-i)e_0\gamma^{\mu}\cdot(-i)rac{g_{\mu
u}}{q^2}\cdot(-i)e_0\gamma^{
u}=ie_0^2\gamma^{\mu}rac{g_{\mu
u}}{q^2}\gamma^{
u}$$

with one loop :

$$(-i)e_{0}\gamma^{\mu}(-i)\frac{g_{\mu\rho}}{q^{2}}(-1)\int \frac{d^{4}k}{(2\pi)^{4}}Tr\left(-i\right)e_{0}\gamma^{\rho}\frac{i(\not k+m)}{k^{2}-m^{2}}(-i)e_{0}\gamma^{\lambda}\frac{i(\not k-\not q+m)}{(k-q)^{2}-m^{2}}\right](-i)\frac{g_{\lambda\nu}}{q^{2}}(-i)e_{0}\gamma^{\nu}$$

trace because we sum over fermions spin states

|--|

does the trace converge ?

$$\int \frac{d^4k}{(k^2 - m^2)^2} = \int \frac{k^3}{(k^2 - m^2)^2} \, dk \, d\Omega$$

divergent for $k
ightarrow \infty$

$$\int^{\infty} \frac{dk}{k} \to \int^{\mu_R} \frac{dk}{k} \qquad \to \text{ we introduce a cutoff}$$

the integral give a log, the effective charge is given by:

$$e_{eff}^{2}(1loop) = ie_{0}^{2}\gamma^{\mu}rac{g_{\mu
u}}{q^{2}}\gamma^{
u}\left[1 + rac{e_{0}^{2}}{12\pi^{2}}\ln\left(rac{m^{2}-q^{2}}{\mu_{R}^{2}}
ight) + rac{e_{0}^{2}}{12\pi^{2}}F(q^{2})
ight]$$

where $F(q^2)$ is a finite function vanishing for $q^2 \to \infty$.

Adding more loops

$$e_{eff}^2 = e_0^2 \left[1 + \frac{e_0^2}{3\pi} \ln\left(\frac{m^2 - q^2}{\mu_{UV}^2}\right) + \left(\frac{e_0^2}{3\pi} \ln\left(\frac{m^2 - q^2}{\mu_{UV}^2}\right)\right)^2 + \cdots \right]$$

behaves arithmetic sequence, whose sum is (using $Q^2 = -q^2$):

$$e_{eff}^2(Q^2) = rac{e_0^2}{1-rac{e_0^2}{3\pi} \ln rac{Q^2}{\mu_R^2}}$$

Laurent Favart (ULB)

7 / 24

Interpretation : using the distance $r^2 \sim 1/Q^2$ (sign in front of In changes)

Interpretation : using the distance $r^2 \sim 1/Q^2$ (sign in front of ln changes)

Interpretation : using the distance $r^2 \sim 1/Q^2$ (sign in front of In changes)

Interpretation : using the distance $r^2 \sim 1/Q^2$ (sign in front of ln changes)

Laurent Favart (ULB)

- the fermion loop (N_f) is similar to the QED case
- the additional gluon loop comes with a (-1)
- sum over N_c colors

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu_R^2)}{1 - \frac{2N_f - 11N_c}{6\pi}\alpha_s(\mu_R^2)\ln\frac{Q^2}{\mu_R^2}}$$

- competition between N_f and N_c
- as $b = 2N_f 11N_c < 0 \Rightarrow$ anti-screening effect

- the fermion loop (N_f) is similar to the QED case
- the additional gluon loop comes with a $\left(-1
 ight)$
- sum over N_c colors

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu_R^2)}{1 - \frac{2N_f - 11N_c}{6\pi}\alpha_s(\mu_R^2)\ln\frac{Q^2}{\mu_R^2}}$$

- competition between N_f and N_c
- as $b = 2N_f 11N_c < 0 \Rightarrow$ anti-screening effect

- QFT gives us the evolution but not the values
- in one direction or the other

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu_R^2)}{1 - \frac{2N_f - 11N_c}{6\pi}\alpha_s(\mu_R^2)\ln\frac{Q^2}{\mu_R^2}}$$

- Λ_{QCD} is defined as the divergent scale value:

$$\alpha_s(\Lambda_{QCD}^2) = \frac{\alpha_s(\mu_R^2)}{0}$$

- $\Lambda_{QCD} \simeq m_\pi \simeq 100$ MeV

-

- QFT gives us the evolution but not the values
- in one direction or the other

$$\alpha_{s}(Q^{2}) = \frac{\alpha_{s}(\mu_{R}^{2})}{1 - \frac{2N_{f} - 11N_{c}}{6\pi}\alpha_{s}(\mu_{R}^{2})\ln\frac{Q^{2}}{\mu_{R}^{2}}}$$

- $\Lambda_{\textit{QCD}}$ is defined as the divergent scale value:

$$\alpha_s(\Lambda_{QCD}^2) = \frac{\alpha_s(\mu_R^2)}{0}$$

- $\Lambda_{QCD} \simeq m_\pi \simeq 100$ MeV

- to apply perturbative methods: $\alpha_{S} \ll 1$ i.e. $Q \gg \Lambda_{QCD}$
- if non-pert. (no Fey. diag, etc) but $\mathcal{L}_{\textit{QCD}}$ is valid

 $e^-e^+
ightarrow q ar q$

- Part 2 -

e^+e^- annihilation and QCD

Laurent Favart (ULB)

11 / 24

= nan

人口区 医静脉 化原料 化原料

quark production from e^-e^+ annihilation

- the cleanest way to produce quarks is from e^-e^+ annihilations:
- no color charge in the initial state
- pure electroweak process (at LO)
- inital state momentum fully transfered to the $qar{q}$
- ightarrow allows us to study q production but also, g radiation, hadronisation,...

- at LO, for γ exchange only:

- negl. mass terms :

$$\overline{|\mathcal{M}|^2} = 8(4\pi)^2 rac{lpha^2}{q^4} N_c \; Q_i^2 \; \{(p_{e^+} \cdot p_q)(p_{e^-} \cdot p_{ar q}) + (p_{e^+} \cdot p_{ar q})(p_{e^-} \cdot p_q)\}$$

- only 1 degree of freedom
- in the c.m.s.:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2}{2s} N_c \ Q_i^2 \ (1 + \cos^2\theta)$$

æ

acces to quark electric charges

- as all hadrons come from quarks and that hadrons only come from quarks :

$$\sigma(e^+e^- o X(ext{any hadron})) = \sum_{i=1}^{N_f} \sigma(e^+e^- o qar q) = rac{4\pilpha^2}{3s} N_c \sum_{i=1}^{N_f} rac{Q_i^2}{Q_i^2}$$

- we can study the observable:

$$R = \frac{\sigma(e^+e^- \to X)}{\sigma(e^+e^- \to \mu^+\mu^-)} = \frac{\frac{4\pi\alpha^2}{3s}N_c\sum_{i=1}^{N_f}Q_i^2}{\frac{4\pi\alpha^2}{3s}} = N_c\sum_{i=1}^{N_f}Q_i^2$$

- is this very simple model realistic ?

$$= \frac{\sigma(e^+e^- \to X)}{\sigma(e^+e^- \to \mu^+\mu^-)} = N_c \sum_{i=1}^{N_f} Q_i^2$$
$$= 3 \left[\left(\frac{2}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \left(\frac{-1}{3}\right)^2 + \dots \right]$$
$$= 2 \quad \text{for } 2m_s \ll \sqrt{s} \ll 2m_c$$
$$= 10/3 \quad \text{for } 2m_c \ll \sqrt{s} \ll 2m_b$$
$$= 11/3 \quad \text{for } 2m_b \ll \sqrt{s} \ll m_Z$$

R

- amazing success if away from resonnances

quark charges are as expected

- if close to a resonnance, the important $np\mbox{QCD}$ corrections only in the numerator

$e^-e^+ ightarrow q ar q$

jets - during the had. process, hadrons are forming around the initial quark direction - two particles below to different jets only if

Laurent Favart (ULB)

 $p_i \cdot p_j \gg \Lambda^2_{QCD}$

- angular measurement:

・ロト・日本・日本・日本・日本・日本

17 / 24

First pQCD correction

- up to now, what we saw was driven by EW ME + hadronisation
- additional jets are due to pQCD effects: gluon radiation from the quark lines

$$e^{+}(p_{e^{+}}) \xrightarrow{\gamma(q)} q(p_{q}) + \cdots \xrightarrow{q(p_{q})} q(p_{q}) + \cdots \xrightarrow{q(p_{q})} q(p_{q}) + \cdots \xrightarrow{q(p_{q})} q(p_{q^{-}}) + (p_{e^{+}} \cdot p_{\bar{q}})(p_{e^{-}} \cdot p_{\bar{q}}) + (p_{e^{+}} \cdot p_{\bar{q}})(p_{e^{-}} \cdot p_{q}) + (p_{e^{+}} \cdot p_{e^{-}})(p_{q} \cdot p_{g})(p_{\bar{q}} \cdot p_{g}) + (p_{e^{+}} \cdot p_{e^{-}})(p_{q} \cdot p_{g})(p_{\bar{q}} \cdot p_{g})$$

1) couplings:
$$lpha^2
ightarrow lpha^2 lpha_{\mathcal{S}}$$
 - first QCD correction

-

イロト イポト イヨト イヨト

First pQCD correction

- up to now, what we saw was driven by EW ME + hadronisation
- additional jets are due to pQCD effects: gluon radiation from the quark lines

$$e^{+}(p_{e^{+}}) \xrightarrow{\gamma(q)} q(p_{q}) + \sum_{e^{-}(p_{e^{-}})} q(p_{e^{-}}) + (p_{e^{+}} + p_{\bar{q}})(p_{e^{-}} + p_{q}) + (p_{e^{+}} + p_{\bar{q}})(p_{e^{-}} + p_{q}) + (p_{e^{+}} + p_{q})(p_{e^{-}} + p_{q}) + (p_{e^{+}} + p_{\bar{q}})(p_{e^{-}} + p_{q}) + (p_{e^{+}} + p_{e^{-}})(p_{e^{-}} + p_{q})(p_{e^{-}} + p_{q}) + (p_{e^{+}} + p_{q})(p_{e^{-}} + p_{q})(p_{e^{-}} + p_{q}) + (p_{e^{+}} + p_{q})(p_{e^{-}} + p_{q})(p_{e^{-}} + p_{q}) + (p_{e^{+}} + p_{q})(p_{e^{-}} + p_{q}) + (p_$$

2) factors: $N_c \rightarrow C_F N_c$

 C_F is the color combinatory for one gluon radiation from a quark with a given color, $C_F = 4/3$ (coming from the λ^a)

First pQCD correction

- up to now, what we saw was driven by EW ME + hadronisation
- additional jets are due to pQCD effects: gluon radiation from the quark lines

$$e^{+}(p_{e^{+}}) \xrightarrow{\gamma(q)} q(p_{q}) + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{q})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-}})} + (p_{e^{+}} \cdot p_{\bar{q}})(p_{e^{-}} \cdot p_{q})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-}})} + (p_{e^{+}} \cdot p_{\bar{q}})(p_{e^{-}} \cdot p_{q})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-}})} + (p_{e^{+}} \cdot p_{\bar{q}})(p_{e^{-}} \cdot p_{q})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-}})} + (p_{e^{+}} \cdot p_{\bar{q}})(p_{e^{-}} \cdot p_{q})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-}})} + (p_{e^{+}} \cdot p_{\bar{q}})(p_{e^{-}} \cdot p_{q})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-}})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-})}} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-}})} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}) \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}) \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}) \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})}) + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})}) + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})}) + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})} + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})}) + \sum_{e^{-}(p_{e^{-})}} \overline{q(p_{e^{-})})$$

3) kinematics:

- note that:
$$q^4 = 4(p_{e^+} \cdot p_{e^-})(p_q \cdot p_{ar q})$$

- so, the kin effect is: $(p_q \cdot p_g) \to (p_q \cdot p_g)(p_{\bar{q}} \cdot p_g)$ - where does it come from ?

4 E K 4 E K

E DQC

$e^-e^+ ightarrow q ar q$

- adding a quark propagator in the ME calculation
- neglecting masses and in soft gluon approximation:

$$\sum_{\bar{q}(p_{\bar{q}})}^{p_q + p_g} q(p_q) \sim \frac{(p_q + p_g) + m_q}{(p_q + p_g)^2 - m_q^2} \notin \sum_{\bar{q}(p_q)}^{m_q = 0} \frac{p_q + p_g}{2(p_q \cdot p_g)} \notin \sum_{\bar{q}(p_q)}^{p_g | \leq |p_q|} \frac{1}{2} \frac{\epsilon \cdot p_q}{p_q \cdot p_g}$$

$e^-e^+ ightarrow q ar q$

- adding a quark propagator in the ME calculation
- neglecting masses and in soft gluon approximation:

$$\begin{array}{c} p_{q} + p_{g} \quad q(p_{q}) \\ & \swarrow \quad p_{q} + p_{g} \quad q(p_{q}) \\ & \swarrow \quad p_{q} + p_{g} \quad p_{q} + p_{g} \end{pmatrix} \\ & \swarrow \quad p_{q} + p_{g} \end{pmatrix}^{(q)} \\ & \sim \frac{1}{2} \quad \frac{\epsilon \cdot p_{q}}{p_{\bar{q}} \cdot p_{g}} \\ & \qquad \qquad \sim \frac{1}{2} \quad \frac{\epsilon \cdot p_{\bar{q}}}{p_{\bar{q}} \cdot p_{g}} \\ \end{array}$$

$e^-e^+ ightarrow qar{q}$

- adding a quark propagator in the ME calculation
- neglecting masses and in soft gluon approximation:

$$\sum_{\substack{q(p_q) \\ q(p_q) \\ q(p_q) \\ q(p_q) \\ p_{\bar{q}} + p_g = \bar{q}(p_q)}} \sum_{\substack{q(p_q) \\ q(p_q) \\ p_{\bar{q}} + p_g = \bar{q}(p_q)}} \sum_{\substack{q(p_q) \\ q(p_q) \\ p_{\bar{q}} + p_g = \bar{q}(p_q)}} \sum_{\substack{q(p_q) \\ q(p_q) \\ p_{\bar{q}} + p_g = \bar{q}(p_q)}} \sum_{\substack{q(p_q) \\ q(p_q) \\ p_{\bar{q}} + p_g = \bar{q}(p_q)}} \sum_{\substack{q(p_q) \\ q(p_q) \\ p_{\bar{q}} + p_g = \bar{q}(p_q)}} \sum_{\substack{q(p_q) \\ p_{\bar{q}} + p_g = \bar{q}(p$$

- putting them together and after sum over the gluon polarisation states (only 2 tranverse states):

$$\mathrm{d}\sigma_{q\bar{q}g} = \frac{\alpha_S}{2\pi} C_F \left[\frac{p_{\bar{q}}}{p_{\bar{q}} \cdot p_g} - \frac{p_q}{p_q \cdot p_g} \right]^2 \frac{\mathrm{d}^3 p_g}{(2\pi)^3 p_g^0} \,\mathrm{d}\sigma_{qq}$$

- note : the sign difference comes from the orientation of $\vec{\epsilon}$

イロト イポト イヨト イヨト

$$\cdots \left[\frac{p_{\bar{q}}}{p_{\bar{q}} \cdot p_g} - \frac{p_q}{p_q \cdot p_g} \right]^2 d\sigma_{qq} \simeq \cdots 2 \frac{p_{\bar{q}} \cdot p_q}{(p_{\bar{q}} \cdot p_g)(p_q \cdot p_g)} d\sigma_{qq}$$
- with the term from $d\sigma_{qq}$:

$$2 \frac{p_{\bar{q}} \cdot p_q}{(p_{\bar{q}} \cdot p_g)(p_q \cdot p_g)} \frac{1}{4(p_{e^+} \cdot p_{e^-})(p_q \cdot p_{\bar{q}})} = \frac{1}{2(p_{e^+} \cdot p_{e^-})(p_{\bar{q}} \cdot p_g)(p_q \cdot p_g)}$$

$\Rightarrow \text{ we find back:}$ $e^+e^- \rightarrow q\bar{q}g: \quad \overline{|\mathcal{M}|^2} = 8(4\pi)^3 \alpha^2 \alpha_S C_F N_c Q_i^2 \frac{(p_{e^+} \cdot p_q)(p_{e^-} \cdot p_{\bar{q}}) + (p_{e^+} \cdot p_{\bar{q}})(p_{e^-} \cdot p_q)}{(p_{e^+} \cdot p_{e^-})(p_q \cdot p_g)(p_{\bar{q}} \cdot p_g)}$

= nan

人口区 医静脉 医连环 医原环

$$\cdots \left[\frac{p_{\bar{q}}}{p_{\bar{q}} \cdot p_g} - \frac{p_q}{p_q \cdot p_g} \right]^2 d\sigma_{qq} \simeq \cdots 2 \frac{p_{\bar{q}} \cdot p_q}{(p_{\bar{q}} \cdot p_g)(p_q \cdot p_g)} d\sigma_{qq}$$

$$- \text{ with the term from } d\sigma_{qq} : \qquad 1/q^4$$

$$2 \frac{p_{\bar{q}} \cdot p_q}{(p_{\bar{q}} \cdot p_g)(p_q \cdot p_g)} \frac{1}{4(p_{e^+} \cdot p_{e^-})(p_q \cdot p_{\bar{q}})} = \frac{1}{2(p_{e^+} \cdot p_{e^-})(p_{\bar{q}} \cdot p_g)(p_q \cdot p_g)}$$

$\Rightarrow \text{ we find back:}$ $e^+e^- \rightarrow q\bar{q}g: \quad \overline{|\mathcal{M}|^2} = 8(4\pi)^3 \alpha^2 \alpha_S C_F N_c Q_i^2 \frac{(p_{e^+} \cdot p_q)(p_{e^-} \cdot p_{\bar{q}}) + (p_{e^+} \cdot p_{\bar{q}})(p_{e^-} \cdot p_q)}{(p_{e^+} \cdot p_{e^-})(p_q \cdot p_g)(p_{\bar{q}} \cdot p_g)}$

🥂 it presents singularities 🏅

if $p_q \cdot p_g
ightarrow 0$ and/or $p_{ar{q}} \cdot p_g
ightarrow 0$

∃ ≥ ►

э

two singularities

$$p_q \cdot p_g = E_q E_g - \vec{p}_q \cdot \vec{p}_g = E_q E_g - |\vec{p}_q| |\vec{p}_g| \cos \theta_{qg}$$

$$\simeq E_q E_g (1 - \cos \theta_{qg})$$

$$\begin{array}{l} \Rightarrow \mbox{ singularities for } p_q \cdot p_g \rightarrow 0 \mbox{ (same for } \bar{q}g) \\ - E_g \rightarrow 0 \mbox{ (soft gluon limit)} \\ - \theta_{qg} \rightarrow 0 \mbox{ (collinear limit)} \end{array}$$

- they correspond to a double pole (when both limits occur at the same time) and a single pole.

- these IR poles are exactly cancelled by the virtual correction UV poles

comparison to data

$$\mathrm{d}\sigma_{q\bar{q}g} = \frac{\alpha_S}{2\pi} C_F \left[\frac{p_{\bar{q}}}{p_{\bar{q}} \cdot p_g} - \frac{p_q}{p_q \cdot p_g} \right]^2 \frac{\mathrm{d}^3 p_g}{(2\pi)^3 p_g^0} \,\mathrm{d}\sigma_{qq}$$

- the cross section has 2 physical degrees of freedom :

- +9 free variables ($d^3p_q, d^3p_{\bar{q}}, d^3p_g$)
- -4 relations (*E*, *P* conservation)

-3 independent (non relevant here - unpolaratised case) Euler angles = 2

- we choose : $x_q = 2E_q/\sqrt{s}$ $x_{\bar{q}} = 2E_{\bar{q}}/\sqrt{s}$ $x_g = 2E_g/\sqrt{s}$ related by $x_q + x_{\bar{q}} + x_g = 2$ and $1 - x_i = \frac{1}{2}x_jx_k(1 - \cos\theta_{jk})$

$$\frac{d^2\sigma_{q\bar{q}g}}{dx_q dx_{\bar{q}}} = \frac{\alpha_s}{2\pi} C_F \frac{x_q^2 + x_{\bar{q}}^2}{(1 - x_q)(1 - x_{\bar{q}})} \sigma_{q\bar{q}}$$

- 2 sigularities correspond to $x_q \rightarrow 1$ and $x_{\bar{q}} \rightarrow 1$

= nan

人口区 医静脉 医连环 医原环

- in data we don't know which is q jet, ...
- sort the 3 jets by decreasing energy :
 - $E_1 > E_2 > E_3$
 - define: $x_i = 2E_i/\sqrt{s}$
- jet 1: $q/ar{q}$ jet almost unaffected ($x_1
 ightarrow 1$ pole)
- jet 2: q/\bar{q} jet with significant energy loss + g jet such that $E_{q/\bar{q}} > E_g > E_{q/\bar{q}}$
- jet 3: mainy the gluon jet (falling distribution) + $q/ar{q}$ jet of the above case

- $\cos \theta_{EK} = rac{\sin \theta_2 - \sin \theta_3}{\sin \theta_1}$

- in data we don't know which is q jet, ...
- sort the 3 jets by decreasing energy :
 - $E_1 > E_2 > E_3$
 - define: $x_i = 2E_i/\sqrt{s}$
- Хı - jet 1: q/\bar{q} jet almost unaffected ($x_1 \rightarrow 1$ pole) - jet 2: q/\bar{q} jet with significant energy loss + g jet 1/N dn/dx₃ (c) such that $E_{a/\bar{a}} > E_g > E_{a/\bar{a}}$ 2 - jet 3: mainy the gluon jet (falling distribution) + q/\bar{q} jet of the above case 0.2 04 0.6 0 X3 $-\cos\theta_{EK} = \frac{\sin\theta_2 - \sin\theta_3}{\sin\theta_1}$ gluons are spin 1 !
 - pure vectorial current (γ^{μ})

Laurent Favart (ULB)

• SLD ---- Vector

0.8

(a)

15

0.6

10 dn/dx¹

_ _ _

//N dn/dx₂

/N dn/dcos0_{EK}

1.0

Scalar ······ Tensor

0.8

Xэ

1.0

(b)

0.6

(d)

0.4

COS

0.8

That's all for today

= 990