Perturbative and colorful lectures on Strong Interactions lecture 4/4

> Laurent Favart IIHE - Université libre de Bruxelles

Belgian Dutch German summer school (BND 2022) - Callantsoog (NL)

September 9, 2022

Laurent Favart (ULB)

BND 2022

DIS: recap

Laurent Favart (ULB)

= 990

イロト イヨト イヨト

PDF evolutions: recap

PDF evolutions: recap

Laurent Favart (ULB)

PDF applied to other processes

extracted quark and gluon densities can then be used to predict other cross section like $p + \bar{p} \rightarrow 2$ jets:

 \Rightarrow evidence for quark compositeness in 1995 at TeVatron

Э

< 🗇 🕨

PDF applied to other processes

extracted quark and gluon densities can then be used to predict other cross section like $p + \bar{p} \rightarrow 2$ jets:

= x

 \Rightarrow evidence for quark compositeness in 1995 at TeVatron No ! Wrong conclusion because no PDF uncertainty was delivered ! here important effect of gluon at large x

イロト イヨト イヨト

PDF uncertainties - state of the art

NNPDF4.0 [2022]

NNPDF4.0 NNLO Q= 3.2 GeV

Major activity is translation of experimental errors (and theory uncertainties) into *uncertainty bands* on extracted PDFs.

PDFs with uncertainties allow one to estimate *degree of reliability* of future predictions

PDF uncertainties - state of the art

NNPDF4.0 [2022]

Major activity is translation of experimental errors (and theory uncertainties) into *uncertainty bands* on extracted PDFs.

PDFs with uncertainties allow one to estimate *degree of reliability* of future predictions

Kinematic coverage

- combined fit of many different measurements (cross sections, ratios, \ldots) from different colliders & fix target
- most of the measurements for $x \ge 3 \, 10^{-4}$

3

・ロト ・聞ト ・ヨト ・ヨト

Uncertainties

- different parametrisations compatible in the well measured phase space
- large differences in the extrapolation region ($x \le 10^{-4})$
- large uncertainty on g at x > 0.1 and for q at $x \to 1$

→ Ξ →

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DGLAP

$$q(x, Q^2) = q(x, \mu_F^2) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q(\xi, \mu_F^2) P_{qq}\left(\frac{x}{\xi}\right) \ln\left(\frac{Q^2}{\mu_F^2}\right) \\ + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} g(\xi, \mu_F^2) P_{qg}\left(\frac{x}{\xi}\right) \ln\left(\frac{Q^2}{\mu_F^2}\right)$$

This can interpreted as the first rung in a set of ladder diagrams, whose rungs are strongly ordered in $\ln Q^2$.

Including higher orders correponds to include more rungs in the ladder.

$$Q^2 \simeq p_{T1}^2 \gg p_{T2}^2 \gg p_{T3}^2 \gg \dots$$

 \Rightarrow DGLAP equations take into account all contributions propotional to:

$$[\alpha_{\mathcal{S}}(Q^2)\ln(\frac{Q^2}{Q_0^2})]^n$$

At small x

$$P_{qq}(z) = \frac{C_F}{2\pi} \left[\frac{1+z^2}{(1-z)} + \frac{3}{2}(1-z) \right] \xrightarrow{z \to 0} cst$$
$$P_{gg}(z) = \frac{C_A}{\pi} \left[\frac{1}{z} + \frac{1}{(1-z)} - 2 + z(1-z) \right] \xrightarrow{z \to 0} \frac{6}{z}$$

The DGLAP equation get simplified:

$$\frac{\partial xg(x,\mu^2)}{\partial \ln \mu^2} = \frac{3}{\pi b} xg(x,\mu^2)$$

(b includes the α_s dependence). Leads to a solution:

$$xg(x,\mu^2) \sim xg(x,\mu_0^2) \exp\left[2\sqrt{rac{6}{b}\ln\ln(rac{\mu^2}{\mu_0^2})\ln(rac{1}{x})}
ight]$$

i.e. double log approximation (DLA) to DGLAP. \Rightarrow Fast rise of the cross section at small x.

Laurent Favart (ULB)

I D F I A P F

10 / 36

At still smaller x

 $\ln(\frac{1}{x}) \gg \ln(\frac{Q^2}{Q_2^2})$

 \Rightarrow DGLAP not valid.

Need to consider gluon ladders with repeated iterations of $P_{gg}(z \ll 1)$ dominate, i.e. we have strong ordering in z.

$$x_1 \gg x_2 \gg x_3 \gg \ldots \gg x_3$$

 \Rightarrow BFKL (Balitsky-Fadin-Kuraev-Lipatov) equations take into account all contributions propotional to:

 $[\alpha_{\mathcal{S}}(Q^2)\ln(\frac{1}{x})]^n$

DGLAP/BFKL

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}(z) = \frac{4\pi^2 \alpha e_q^2}{s} \frac{1}{p_T^2} \frac{\alpha_S}{2\pi} P_{qq}(z)$$

•
$$\int dP_T^2 \to \ln Q^2$$
: DGLAP

Laurent Favart (UL	B)
--------------------	----

DGLAP/BFKL

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2}(z) = \frac{4\pi^2 \alpha e_q^2}{s} \frac{1}{p_T^2} \frac{\alpha_S}{2\pi} P_{qq}(z)$$

• $\int dP_T^2 \rightarrow \ln Q^2$: DGLAP • $\int dz \rightarrow \ln 1/x$: BFKL

Laurent Favart (ULB)

12 / 36

Ξ.

イロト イロト イヨト イヨト

Forward jet production and BFKL

To try to find an evidence of the need of the BFKL dynamic: look at forward jet production.

Select events with $Q^2/P_{Tiet}^2 \sim 1$ to supress (qu) (up) p_{T int} > 3.5 Ge b) print > 3.5 GeV ð DGLAP region of phase space. 10/ 350 350 LO BFKL NLO (DISENT) LEPTO 6.5 250 ARIADNE 4 05 200 200 150 150 100 100 0.001 0.002 0.003 0.004 0.001 0.002 0.003 0.004 p_{7 int} > 5.0 GeV £ p_{T iet} > 5.0 GeV 225 225 d) c) 200 200 20000 x2. k2. 10 / dx lo/dx 175 175 2000 x 1. kt.1 150 150 125 125 100 100 75 75 DGLAP (NLO) prediction too low 50 25

BFKL closer to data

Laurent Favart (ULB)

BND 2022

0.001 0.002

0.003 0.004

¥

13 / 36

0.004

0 003

0.001 0.002

Saturation

Steep rise at small x is problematic: the density gets so large that re-interaction ($gg \rightarrow g$) should take place \rightarrow saturation

Saturation has to be expected when Q^2 is such than the recombination cross section times the number of gluons gets close to the hadron transverse size, i.e.

 $\sigma_{gg} N_g \simeq R_\perp$ with $\sigma_{gg} \sim lpha_S/Q^2$, $N_g \sim xg(x,Q^2)$

saturation should start when:

$$Q_s^2(x) \sim lpha_S rac{xg(x,Q^2)}{R_\perp} \sim (rac{1}{x})^\lambda$$

Conclusion of this section and open questions

- In a few decades our understanding of the proton structure has drastically changed
- from a static model with 3 valence quarks to a dynamic object with a high gluon density (→ what is a colour field ?)
- DGLAP: phenomenal succes of pQCD on a large phase space (4×4 orders of magnetude)
- Do we have to go beyond DGLAP (BFKL dynamics, saturation,...) ? attractive explanations but not fully proven yet.
- many other open questions today:
 - 1) transverse spacial quark and gluon distributions ?
 - 2) correlations between partons ?
 - 3) how is the proton spin mad by the partons ? (orbital angulair momentum of q and g)

4) ...

BFKL

- Part 4 -

hadron - hadron interactions

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ○ 2 ○

Laurent Favart (ULB)

High energy p - p (or $p - \bar{p}$) interactions

- most of the interactions are non perturbative even at very high \sqrt{s}
- but the available energy makes high momentum transfer possible \rightarrow perturbative interactions (scale = Q^2)

Laurent Favart (ULB)

DIS

hadron interactions

$$\sigma_{pp \to X(Q)} = \sum_{a,b=q,\bar{q},g} \int_0^1 dx_1 \, dx_2 \, f_{a/h}(x_1,\mu_F) \, f_{b/h'}(x_2,\mu_F)$$
$$\times \hat{\sigma}_{ab \to X(Q)}(x_1,x_2,Q,\mu_F,\alpha_s(\mu_R))$$
$$\times \theta(x_1x_2 \, s - Q^2)$$

Laurent Favart (ULB)

3

hadron interactions р $\operatorname{PDF}^{\mathcal{U}}_{\mathcal{U}_{\mathcal{U}_{\mathcal{U}}}}g(x_{2},\mu_{F}^{2})$ x_2 B amany x_1 $q(x_1, \mu_F^2)$ PDF $\equiv x$

$$\sigma_{pp \to X(Q)} = \sum_{a,b=q,\bar{q},g} \int_0^1 dx_1 \, dx_2 \, f_{a/h}(x_1,\mu_F) \, f_{b/h'}(x_2,\mu_F)$$
$$\times \hat{\sigma}_{ab \to X(Q)}(x_1,x_2,Q,\mu_F,\alpha_s(\mu_R))$$
$$\times \theta(x_1x_2 \, s - Q^2)$$

$$Q^{2} = M_{qg}^{2} = (p_{q} + p_{g})^{2}$$

= 2 E_q E_g (1 - cos θ_{qg})
= 4 E_q E_g = 4 x₁ p₁ x₂ p₂ = x₁ x₂ s

18 / 36

э

 $\sigma_{pp\to X(Q)} = \sum_{a,b=q,\bar{q},g} \int_0^1 dx_1 \, dx_2 \, f_{a/h}(x_1,\mu_F) \, f_{b/h'}(x_2,\mu_F)$ × $\hat{\sigma}_{ab \to X(Q)}(x_1, x_2, Q, \mu_F, \alpha_s(\mu_R))$ $imes heta(x_1x_2\,s-Q^2)+\mathcal{O}\left(rac{\Lambda^2_{QCD}}{Q^2}
ight)$ $\mathcal{O}\left(rac{\Lambda^2_{QCD}}{Q^2}
ight)$ vanishing term for $Q^2
ightarrow\infty$ - that can break the factorisation

- called higher twist

Multiple Parton Interactions

high energy \rightarrow high parton densities (at low x)

 \rightarrow probability of multiple partons scattering increases

Direct consequence of the composite nature of hadrons.

- \rightarrow Out of the frame of the QCD factorisation.
- \rightarrow No clear separation with single parton + splitting
- \rightarrow non-trivial changes of colour topology
- \rightarrow in case of two hard interactions: Double Parton Interaction (DPS)

Multiple Parton Interactions

high energy \rightarrow high parton densities (at low x)

 \rightarrow probability of multiple partons scattering increases

Direct consequence of the composite nature of hadrons.

- \rightarrow Out of the frame of the QCD factorisation.
- \rightarrow No clear separation with single parton + splitting
- \rightarrow non-trivial changes of colour topology
- \rightarrow in case of two hard interactions: Double Parton Interaction (DPS)

The correlation between the two partons depends on their relative distance:

 \Rightarrow possibility to learn about parton location in the proton (like GPDs ?).

Jet production

- The dijet (or total multijet) is the perturbative process with the highest cross section
- first test at a collider with higher energy to test QCD and the presence of new physics

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}y_{c}\,\mathrm{d}y_{d}\,\mathrm{d}p_{T}^{2}} = \frac{1}{16\pi s^{2}x_{1}x_{2}}\sum_{a,b,c,d=q,\bar{q},g}f_{a/h}(x_{1},\mu_{F}) f_{b/h'}(x_{2},\mu_{F})$$

$$\times \overline{|\mathcal{M}(ab \to cd)|^{2}} \frac{1}{1+\delta_{cd}}$$

$$\delta_{cd}: \text{ statistical factor for identical final state}$$

$$-x_{1} \text{ and } x_{2} \text{ can be accessed via:}$$

$$\tau = \frac{\hat{s}}{s} = \frac{M_{cd}^{2}}{s} = x_{1}x_{2}$$

$$y_{cd} = \frac{y_{c} + y_{d}}{2} = \frac{1}{2}\ln\frac{x_{1}}{x_{2}}$$

Dijet cross section calculation (LO)

Laurent Favart (ULB)

BND 2022

21 / 36

∃ 990

イロト イヨト イヨト イヨト

Dijet cross section measurement

Laurent Favart (ULB)

- this measurement constraints further gluon densities at large x

BND 2022	22 / 36

Drell-Yan process

- annihilation of a q with a \bar{q} in hadronic interactions giving a charged lepton pair
- the only process in hadron interaction for which we are approaching percent level precision both experimentally and theoretically

at LO, on can derive easily $\sigma_{q\bar{q}\to I^-I^+}$ from:

$$\frac{\mathrm{d}\sigma_{e^-e^+\to q\bar{q}}}{\mathrm{d}\Omega} = \frac{\alpha^2}{4s}e_q^2\,\left(1+\cos^2\theta\right) = \frac{\alpha^2}{4s}e_q^2\,\frac{t^2+u^2}{s^2}$$

where a sum on final state colors was done, here we should take the average:

$$\frac{\mathrm{d}\sigma_{q\bar{q}\to l^-l^+}}{\mathrm{d}\Omega} = \frac{1}{3} \frac{\alpha^2}{4s_{q\bar{q}}} e_q^2 \frac{t^2 + u^2}{s_{q\bar{q}}^2}$$
$$r(q\bar{q}\to l^-l^+) = \frac{4\pi\alpha^2}{9s_{q\bar{q}}} e_q^2$$

C

Drell-Yan process

- annihilation of a q with a \bar{q} in hadronic interactions giving a charged lepton pair

- the only process in hadron interaction for which we are approaching percent level precision both experimentally and theoretically

DY: Mass distribution

- here we derived only the one γ exchange
- but resonances have to be taken into account
- in particular the Z boson at the LHC/TeVatron

First DY Cross section measurements

Laurent Favart (ULB)

BND 2022

25 / 36

First DY Cross section measurements

BND 2022

DY: transverse momentum

- in top of the normalisation problem, the transverse momentum of the lepton pair is not described

- at LO, everything is longitudinal (x of PDF are p longitudinal momentum fraction)

DY: transverse momentum

- in top of the normalisation problem, the transverse momentum of the lepton pair is not described

- at LO, everything is longitudinal (x of PDF are p longitudinal momentum fraction)

- low P_T part explained by the Fermi motion inside the proton:

 $\Delta p \ge \hbar/2\Delta x \simeq 113$ MeV for each transverse direction and each proton (of $\Delta x = 0.87$ fm) \Rightarrow typically 500 MeV (fit to date gives 760 MeV)

- missing NLO !

Laurent Favart ((ULB)
------------------	-------

$\mathsf{DY}\xspace$ at $\mathsf{NLO}\xspace$

LO	NLO	
	processus d'annihilation	processus QCD
$q + \bar{q} \rightarrow \gamma^*$	$q + \bar{q} \rightarrow g + \gamma^*$	$q + g \rightarrow q + \gamma^*$
>	+ toos	+ + + + + + + + + + + + + + + + + + + +
1	$16\pi^2 \alpha_S \alpha_9^8 \left[\frac{\hat{u}^2}{\hat{t}^2} + \frac{\hat{t}^2}{\hat{u}^2} + \frac{2M^2\hat{s}}{\hat{u}\hat{t}} \right]$	$16\pi^{2}\alpha_{S}\alpha_{\frac{1}{3}}\left[-\frac{t^{2}}{s^{2}}-\frac{s^{2}}{t^{2}}-\frac{2M^{2}\hat{u}}{\hat{s}\hat{t}}\right]$

27 / 36

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

DY at NLO

- \Rightarrow nicely describes the large $P_{\mathcal{T}}$ distribution
- \Rightarrow nicely describes the normalisation
- large NLO effect because a new type of diagram comes in, furthermore with (huge) gluon densities

complete success

Laurent Favart (ULB)

BND 2022

27 / 36

5

3

2 3

P-[GeV]

メロト メポト メヨト

10-3

DY constrains on PDF

- assuming hypercharge symmetry such as $u = u_p = d_n$ and et $d = d_p = u_n$,
- assuming there are only 2 flavours :

$$\sigma^{pp} \sim \frac{4}{9}u(x_1)\bar{u}(x_2) + \frac{1}{9}d(x_1)\bar{d}(x_2)$$

$$\sigma^{pn} \sim \frac{4}{9}u(x_1)\bar{d}(x_2) + \frac{1}{9}d(x_1)\bar{u}(x_2)$$

the ratio, using p and deuterium target:

$$\frac{\sigma^{pd}}{2\sigma^{pp}} = \frac{\left(1 + \frac{1}{4}\frac{d(x_1)}{u(x_1)}\right)}{\left(1 + \frac{1}{4}\frac{d(x_1)}{u(x_1)}\frac{\bar{d}(x_2)}{\bar{u}(x_2)}\right)} \left(1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)}\right) \simeq 1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \qquad \overset{\text{os}}{\underset{\substack{i=1,\dots,i=1,\dots$$

σ /2σ

 \Rightarrow the sea distributions of \bar{u} and \bar{d} are different ! Surprise !

Laurent Favart (ULB)

1.3 1.2 1.1 0.9

E866 (2001)

DY: state of the art

- the NLO contribution diverges at low P_t

- a realistic description of the P_t spectrum requires a resummation of many gluon radiation
- can be done in different ways:
 - analytic calculation
 - Monte Carlo Parton Showers (PS)
 - PDF \rightarrow Transverse Momentum Distributions (TMDs)

A 3 >

Multileg Monte Carlo

- to compute NN...NNLO is presently not possible
- several modern Monte Carlos make generate separated samples of LO ME for a given number of parton in the final state \longrightarrow
- PS is added on each colored branch of each event
- globally: ME \rightarrow large P_T , PS \rightarrow small P_T
- merging procedure is done avoiding double counting
- samples are put together
- drawback: PS have fitted parameters they depend on $\sqrt{s} \rightarrow$ problem somewhere !

Multileg Monte Carlo

- to compute NN...NNLO is presently not possible
- several modern Monte Carlos make generate separated samples of LO ME for a given number of parton in the final state CDF [PRL 84 (2000)]
- PS is added on each colored branch of each event
- globally: ME \rightarrow large P_T , PS \rightarrow small P_T
- merging procedure is done avoiding double counting
- samples are put together
- drawback: PS have fitted parameters they depend on $\sqrt{s} \rightarrow$ problem somewhere

NLO multileg Monte Carlo

- some MC push the complexity to including NLO ME in a multileg approach:

Z + jet(s)

- need ME with many partons to described high jet multiplicity

- need ME at NLO to describe well the P_t shapes (jet or Z), at large P_t

approaching high precision, in a large phase space and for up to 2 jet multiplicities

32 / 36

TMDs: Transverse Momemtum Distributions

- PDF: $f_a(x, \mu^2)$ are purely longitudinal, a = q, g
- TMDs: $f_a(x, \vec{k_t}, \mu^2)$ include a transverse component
- ∃ several different approaches. Example here PB TMDS: *Parton Branching TMDs*

TMDs: Transverse Momemtum Distributions

- PDF: $f_a(x, \mu^2)$ are purely longitudinal, a = q, g
- TMDs: $f_a(x, \vec{k_t}, \mu^2)$ include a transverse component
- ∃ several different approaches. Example here PB TMDS: *Parton Branching TMDs*
- idea of PB TMDS: construct iteratively $\vec{k_t}$ purely dynamically

$$f_{a}(x,\mu^{2}) = f_{a}(x,\mu_{0}^{2})\Delta_{a}(\mu^{2},\mu_{0}^{2})$$

$$+ \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu_{1}^{2}}{\mu_{1}^{2}}\Delta_{a}(\mu^{2},\mu_{1}^{2})\sum_{b}\int_{x}^{z_{M}} \frac{dz}{z}\frac{\alpha_{5}}{2\pi}P_{ab}^{R}(z)f_{b}(x/z,\mu_{1}^{2})\Delta_{b}(\mu_{1}^{2},\mu_{0}^{2})$$

$$\overset{z_{2}\gamma}{\longrightarrow} \mu_{a}}{\longrightarrow} \mu_{a}$$

$$\overset{z_{2}\gamma}{\longrightarrow} \mu_{a}$$

e

PBTMDs

- an iterative procedure is applied, keeping in memory the kinematic at each step
- and in particular the transverse momenta, choosing: $p_T^2 = (1-z)^2 \mu_i^2$
- PBTMDs are obtained from fit to HERA data, then predicts Drell-Yan cross sections:

- only 1 parameter of non-pert. origin: intrinsic p_t

great success !

Laurent Favart (ULB)

BND 2022

34 / 36

イロト イヨト イヨト

Conclusion and Open questions

- The TeVatron & LHC opened a new range in energy
- allowed study processes at high scales and multijet production
- huge progresses have been achieved on all aspects
- a precise prediction (at % level) remains a challenge for many observables
- they are needed to measure the Higgs production (very close to Drell-Yan) and decay as precisely as possible
- and to put constrains on new physics

-

General conclusions

- the understanding of the strong interactions has started about 50 years ago
- the strong interaction is responsible for a very large diversity of phenomena and reactions (confinement of hadrons and of nuclei, nuclear physics, asymptotic freedom, q-g plasma, particle interactions,...)
- we now reach the 1 percent precision level for some processes
- there are still many things to be understood and probably many surprises to come...