Physique des Particules et Physique Nucléaire

PHYS-F305 Année 2022-2023 Première partie - L. Favart

IV - Les accélérateurs

Contenu Chapitre IV

IV. Les accélérateurs de particules

- 1. L'accélération
- 2. Accélérateurs linéaires (LINAC)
- 3. Cavités accélératrices radio fréquences
- 4. La focalisation
- 5. Accélérateurs circulaires: Synchrotrons
- 6. L'émittance
- 7. Le rayonnement synchrotron
- 8. Les complexes d'accélérateurs (CERN, HERA,...)
- 9. Les faisceaux secondaires

Objectifs

1) pouvoir de résolution

$$\lambda(cm) = \frac{h}{p} = \frac{1.24 \cdot 10^{-10} \text{MeV s}}{p[\text{MeV/c}]}$$

$\Delta x \ (\text{cm})$	énergie	domaine
10^{-5}	2 eV	microscope
10^{-8}	2 keV	rayons X
10^{-11}	$2 \text{ MeV} \simeq 40 m_e$	rayons γ
10^{-14}	$2 \text{ GeV} \simeq 2 m_p$	accélérateurs
10^{-16}	$200 \text{ GeV} \simeq 2 m_Z$	accélérateurs
10^{-18}	20 TeV	accélérateurs (limite actuelle)

2) création de nouvelles particules

$$p + p \to p + p + \pi^0$$
 possible si $s \ge (2m_p + m_{\pi^0})^2$

$$\mathcal{L} = \frac{N_1 \ N_2 \ N_b \ f}{A} = \frac{N_1 \ N_2 \ N_b \ f}{4\pi \ \sigma_x \sigma_y}$$

 N_1 et N_2 : nombre de particules par paquet des faisceaux N_b : nombre de paquets qui entrent en collision f: fréquence de révolution $[s^{-1}]$ A: aire de l'ellipse de recouvrement des faisceaux $[cm^2]$

profil gaussien

Principes de base

Les éléments de base d'un accélérateur sont :

- 1. la source : des particules stables ou des ions
- 2. un chambre à vide
- 3. un dispositif de guidage et de focalisation
- 4. un dispositif d'accélération
- 5. un cible (qui peut être un autre faisceau)
- 6. un système de contrôle
- 7. le blindage, pour protéger le personnel et le matériel des radiations

guidage, focalisation et accélération :

$$\begin{split} \vec{F} &= q \, \vec{E} + q \, \vec{v} \times \vec{B} \\ \Delta E &= \int \vec{F} \cdot \vec{v} \, \mathrm{d}t = q \int (\vec{E} + \vec{v} \times \vec{B}) \cdot \vec{v} \, \mathrm{d}t \\ &= q \int \vec{E} \cdot \vec{v} \, \mathrm{d}t \quad \text{seul E permet d'accélérer les particules} \end{split}$$

evacuated tube

Principaux collisionneurs

accélérateur	énergies	\mathcal{L}	fréquence	σ_x/σ_y	particules
	[GeVxGeV]	$[10^{30} \text{ cm}^{-2} s^{-1}]$	$[s^{-1}]$	$[\mu m/\mu m]$	par paquet
SPS $(p\bar{p})$	315x315	6	$4\cdot 10^5$	60/30	10^{10}
TeVatron $(p\bar{p})$	1000 x 1000	100	$4\cdot 10^6$	30/30	$30/8 \cdot 10^{10}$
HERA (ep)	30x920	50	$10\cdot 10^9$	250/50	$3/7 \cdot 10^{10}$
LHC (pp)	7000 x 7000	15000	$40\cdot 10^9$	17/17	$11\cdot 10^{10}$
LEP (e^+e^-)	105 x 105	100	$1\cdot 10^4$	200/3	$5\cdot 10^{10}$
SLC (e^+e^-)	50x50	2	120	100/100	$4\cdot 10^{10}$
PEP (e^+e^-)	9x3	3000	NA	150/5	$2/6 \cdot 10^{10}$
KEKB (e^+e^-)	8x3.5	10000	NA	77/2	$1.3/1.6 \cdot 10^{10}$

Champ électrique statique

Figure 1 Schéma d'un accélérateur Van De Graaf.

Encore utilisé près des sources d'ions

Accélérateurs linéaires radio fréquence

tension HF

LINAC de R. Wideröe-1928

 $V(t) = V_0(\sin \omega t + \phi) \qquad V_0 \sim \text{quelques kV}$ $\Delta E_{cin} = \int \vec{F} \cdot d\vec{l} = \int q \vec{E} \cdot d\vec{l} = q \Delta V$

 ΔV est la différence de potentiel moyen entre deux éléments

Linac d'Alvarez

Accélérateurs linéaires d'électrons

SLC: Stanford Linear Accelarator (SLAC) 3 km - 80 000 cavités accélératrices Ee = 50 GeV1966-2000

Cavité accélératrices radio fréquences (RF)

 1) on crée un champ E variable en appliquant une ΔV variable ⇒ champ B variable

- 2) on la piège dans une cavité conductrice résonnante
- 3) par réflexions multiples sur les parois, on crée une onde EM stationnaire
- 4) on y injecte des particules

⇒ accélération et mise en paquets

plusieurs cavités mises bout à bout = guide d'ondes

Cavité accélératrices RF résonnante

fréquence de résonance : $\omega_0 = 1/\sqrt{LC}$

on adapte la structure de façon à minimiser l'impédance et donc à maximiser le transfert d'énergie vers le faisceau (équivalent de la résistance)

• au LHC : 400 MHz

$$\omega_0 = h f_{rev} \qquad f_{rev} = \frac{\beta c}{2\pi R} = \frac{c}{26659[m]} = 1.1246 \, 10^4 \, Hz \Rightarrow h = 35640$$

nombre harmonique

Cavité accélératrices radio fréquences

Cavité résonnante du LEP PHYS-F305 - L. Favart - Chapitre IV

Cavités supraconductrices (en niobium) du LHC

La focalisation : aimants quadripolaires

quadrupole électrique ou magnétique ?

$$\vec{F} = q \, \vec{E} + q \, \vec{v} \times \vec{B}$$

Exemple de quadrupôle Focalisant en horizontal Défocalisation en vertical

La focalisation : aimants quadripolaires

champ linéaire en la distance

$$\vec{\nabla} \times \vec{B} = 0 \qquad \Rightarrow \quad \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = cte = K$$

 $\Rightarrow \quad B_x = K y, \qquad B_y = K x,$
 $\Rightarrow \quad F_x = -qvBy, \qquad F_y = qvBx.$

effet globalement focalisant : succession de quadripôles

 $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$

si on choisit : $f_1 = -f_2 \implies f > 0$

Exemple: LHC près de CMS

Exemple: LHC près de CMS

Les accélérateurs circulaires

PHYS-F305 - L. Favart - Chapitre IV

Accélérateurs circulaires: synchrotron

Synchrotron :

- B croissant avec le temps pour maintenir l'orbite lorsque son énergie augmente ;
- une fréquence d'accélération croissant la vitesse de la particule ;
- une injection de particules à une certaine énergie, (B rémanent sur l'orbite à l'injection).

Synchronisation

- •A = particule synchrone (= "idéale")
 •B en retard, reçoit moins d'énergie
 → R ↓ et f ↑ → en avance
 •C en avance, reçoit plus d'énergie
 - \rightarrow R \uparrow et f \downarrow \rightarrow en retard

\Rightarrow phasage induit, mais oscillations autour de l'orbite nominale

Trajectoires des particules

ensemble des variables nécessaires pour d'écrire l'orbite d'une particules :

$$(x, x', y, y', \Delta L, \Delta p/p)$$
 où $x' = \frac{\mathrm{d}x}{\mathrm{d}s} \simeq \theta_x$ $y' = \frac{\mathrm{d}y}{\mathrm{d}s} \simeq \theta_y$ $\Delta L = s - s_0$

Emittance d'un faisceau

<u>Théorème de Liouville</u> : A est conservé (pour un système conservatif - à p fixe)

taille du faisceau

$$\sigma_x(s) = \sqrt{(\beta_x^* + \frac{s^2}{\beta_x^*})\epsilon_x} \qquad \qquad \mathcal{L} = \frac{N_1 N_2 N_b f}{4\pi \sigma_x \sigma_y} \simeq \frac{N_1 N_2 N_b f}{4\pi \sqrt{\beta_x^* \epsilon_x} \sqrt{\beta_y^* \epsilon_y}}$$
si $\beta_x^* \gg \sigma_x$ et $\beta_y^* \gg \sigma_y$.

NB l'angle Θ_x ici est définit par rapport a l'axe z au point d'interaction et non par rapport à s (local)

Radiation synchrotron/de courbure

Radiation synchrotron/de courbure

vecteur de Poynting : énergie rayonnée

 $\vec{S} = \vec{E} \times \vec{B} > 0$

puissance rayonnée :

$$\mathcal{P} = \frac{2}{3} \frac{q^2 c}{4\pi\epsilon_0} \frac{\gamma^4 \beta^4}{R^2} \xrightarrow[\beta \to 1]{} \sim \frac{p^4}{m^4 R^2}$$

 $p/mc = \beta \gamma$.

perte d'E par tour :

$$\Delta E = \mathcal{P} \frac{2\pi R}{\beta c} = \frac{1}{3} \frac{q^2 c}{\epsilon_0} \frac{\gamma^4 \beta^3}{R}$$
tps de revol

		E[GeV]	R[m]	I[mA]	B[T]	$\Delta E[{ m GeV/tour}]$	$\mathcal{P}[MW]$
e-	LEP100	50	3096	6	0.06	0.17	1.1
e-	LEP200	104.5	3096	6	0.12	3.4	20.5
р	LHC	7000	2778	1060	8.3	$6.9 \ 10^{-6}$	$7.3 \ 10^{-3}$

 $\frac{\mathcal{P}_p}{\mathcal{P}_e} = \frac{m_e^4}{m_p^4} \simeq 9 \ 10^{-14}$

Complexes d'accélérateurs : CERN

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

4. <u>SPS</u> : Synchrotron ($\emptyset \sim 2200 \text{ m}$) \rightarrow 450 GeV

(Ancien collisionneur pp ($\sqrt{s} = 540 \text{ GeV}$) $L \le 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$)

5. <u>LHC:</u> Synchrotron ($\varnothing \sim 6200 \text{ m}$) Collisionneur pp ($\sqrt{s} = 8 \text{ TeV} \rightarrow 14 \text{ TeV}$ (2015?) L $\leq 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Collisionneur Pb⁺Pb⁺ 2,75 TeV/nucléon

CERN: 0 - source

Radio Frequency Quadrupole (RFQ) -1m; 750keV

THURS.

A PROTON SOURCE

PREINJECTEUR

ATTEN

H₂

LINAC

HAUTE TE

DO KY

Duoplasmatron proton source 90keV ; 500mA

CERN: 1 - LINAC

LINAC 2

Energie: ~90 keV \rightarrow 50 MeV 1 paquet long de 200 μ s

CERN : 2 - Booster PSB

PHYS-F305 - L. Favart - Chapitre IV

4+2 paquets

29

Périmètre 628m Energie: 1.4 → 25 GeV séparation des paquets (25ns) 15

BOOSTER

Hall EST

Hall SUD

EAN.

LINAC

PHYS-F305 - L. Favart - Chapitre IV

à 1.4 GeV : séparation des (6+1 vide) paquets en 3

CERN: 4 - PS - séparation des paquets

CERN: 4 - SPS

P

accél

5

quadrupole

1974

dipole

NB 231

Energie: $25 \rightarrow 450 \text{ GeV}$ 4 trains de 72 = 288 paquets

CERN: 5 - LHC

Energie: $450 \rightarrow 7000 \text{ GeV}$ n x 288 $\rightarrow 2 \text{ x } 2808 \text{ paquets}$

1232 dipoles - Bz=8.3 Tesla

LHC : remplissage et accélération

LHC : paramètres

Parameter	Nominal		
beam energy [TeV]	7.0		
bunch spacing [ns]	25		
k [no. bunches]	2808		
N _b [10 ¹¹ p/bunch]	1.15		
ε [mm mrad]	3.75		
β* [m]	0.55		
half crossing angle [µrad]	142.5		
L reduction factor	~0.84		
L [cm ⁻² s ⁻¹]	10 ³⁴		

collisions non purement frontales

Animation CERN - LHC

Synchrotron : LEIR

LEIR: Low Energy Ion Ring - CERN

Principaux collisionneurs

	Energy	\mathcal{L}_{max}	rate	σ_x/σ_y	Particles
	(GeV)	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	s^{-1}	$\mu { m m}/\mu { m m}$	per bunch
SPS $(p\bar{p})$	315x315	6 10 ³⁰	$4 \ 10^5$	60/30	$pprox$ 10 10 10
Tevatron $(p\bar{p})$	1000x1000	100 10 ³⁰	7 10 ⁶	30/30	pprox 30/8 10 ¹⁰
HERA (e ⁺ p)	30x920	40 10 ³⁰	40	250/50	pprox 3/7 10 ¹⁰
LHC (pp)	7000x7000	10000 10 ³⁰	10 ⁹	17/17	pprox 11 10 ¹⁰
LEP (e ⁺ e ⁻)	105×105	100 10 ³⁰	≤ 1	200/2	pprox 50 10 ¹⁰
$PEP (e^+e^-)$	9x3	8000 10 ³⁰	NA	150/5	$pprox \mathbf{2/6} \ 10^{10}$

Collisionneurs : LEP

 $σ_{x, y}$ = 200 μm , 8 μm → L ~10³² cm⁻² s⁻¹

LEP (1989-2001) - CERN

Collisionneurs p-p: TeVatron

PHYS-F305 - L. Favart - Chapitre IV

Collisionneurs e-p HERA

premier faisceau de p supraconducteur

fonctionnement 1992-2007

Faisceaux secondaires

Sources secondaires :

plus loin de la cible, suivi de : $K^+ \to \mu^+ + \nu_\mu$ $\pi^+ \to \mu^+ + \nu_\mu$

Faisceaux secondaires

Particules chargées

focalisé et sélectionnées en p: aimants collimateurs

(dessin pas à l'échelle)

Faisceaux secondaires

 $\Delta \theta = \theta_K - \theta_{\pi^{\pm}} = 0.1 \text{ mrad (soit environ } 0.005^\circ)$

Faisceaux secondaires : neutrinos

 $CERN \rightarrow Gran Sasso$

Production :

$$\begin{split} \mathsf{K}^{\pm} &\to \mu^{\pm} + \nu_{\mu} / \overline{\nu_{\mu}} &\sim 64\% \quad \pi^{\pm} \to \mu^{\pm} + \nu_{\mu} / \overline{\nu_{\mu}} &\sim 100\% \\ \mathsf{K}^{\pm} &\to \pi^{\circ} + e^{\pm} + \overline{\nu_{e}} / \nu_{e} &\sim 5\% \quad \mu^{\pm} \to e^{\pm} + \nu_{e} / \overline{\nu_{e}} + \overline{\nu_{\mu}} / \nu_{\mu} &\sim 100\% \\ \mathsf{K}^{\pm} &\to \pi^{\circ} + \mu^{\pm} + \nu_{\mu} / \overline{\nu_{\mu}} &\sim 3\% \end{split}$$

CERN: CNGS

▶ p (proton) ▶ ion ▶ neutrons ▶ p̄ (antiproton) → + → proton/antiproton conversion ▶ neutrinos ▶ electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

CERN: CNGS

CERN: CNGS \rightarrow LNGS

