# Physique des Particules et Physique Nucléaire

PHYS-F305 Année 2022-2023 Première partie - L. Favart

# V - Interactions des particules avec la matière

# Contenu Chapitre V

- V. Interactions des particules avec la matière
  - 1. Tableau général
  - 2. Interactions électromagnétiques
    - 2.a interactions des particules chargées
      - perte d'E par ionisation
      - perte d'énergie par unité de longueur, Bethe-Bloch
      - rayonnement de freinage
    - 2.b interactions des photons
      - effet photo-électrique
      - diffusion Compton
      - création de paires
  - 3. Interactions nucléaires fortes

# Tableau général

| $\mathrm{e}^{\pm}, \mu$                                  | EM |    |
|----------------------------------------------------------|----|----|
| γ                                                        | EM |    |
| $\mathrm{p}, \boldsymbol{\pi}, \mathrm{K}^{\pm}, \ldots$ | EM | IF |
| $n, K^0, \Lambda, \dots$                                 |    | IF |

 $\rm PHYS\text{-}F305$  - L. Favart - Chapitre V



# Interactions des photons



## Interactions EM



 $\rm PHYS\text{-}F305$  - L. Favart - Chapitre V

# Interactions EM des particules chargées - ionisation



 $\sigma \simeq 10^{-16} - 10^{-17} \mathrm{cm}^2$ 

mais nombre d'atome très élevé

Bohr (1913) : calcul de la perte d'énergie par unité de longueur (classique)



$$\Delta p_x = \int_{-\infty}^{+\infty} F_x(t) \, dt = \int_{-\infty}^{+\infty} ze \, E_x(t) \, dt = 0$$

$$\Delta p_y = \int_{-\infty}^{+\infty} ze \, E_y(t) \, dt = \frac{ze}{v} \int_{-\infty}^{+\infty} E_y(x) dx$$

$$\Delta p_z = 0$$

PHYS-F305 - L. Favart - Chapitre V

approximations :

- $e^-$  libre et au repos car v >> vorbitale
- particule incidente non déviée
- déplacement de l'e- est négl.



suite du calcul de la perte d'énergie par unité de longueur (classique)



Th. de Gauss : flux traversant él. de surface du cylindre de rayon b= somme charges int

$$\oint_{S} \vec{E} \cdot d\vec{S} = \int_{-\infty}^{+\infty} 2\pi b E_{y}(x) dx = \frac{e}{\epsilon_{0}} = 4\pi e \qquad (\epsilon_{0} = 1/4\pi) \qquad \text{en la position de l'e-}$$

$$\Rightarrow \int_{-\infty}^{+\infty} E_y(x) dx = \frac{2e}{b} \qquad \Rightarrow \qquad \begin{array}{c} \text{énergie acquise par l'e} & \text{indép. de m} \\ \Delta E = \frac{p^2}{2m_e} = \frac{2z^2e^4}{m_ev^2b^2} & \text{et du signe de} \\ \text{la charge} \end{array}$$

Remarque : intégration avec le noyau (Z,M)

$$\Delta E_Z = \frac{2Z^2 z^2 e^4}{M v^2 b^2} \quad \text{rapport Ze/N}: \ \frac{Z \Delta E_e}{\Delta E_Z} \simeq \frac{Z/m_e}{Z^2/M} \simeq \frac{1/m_e}{Z/2Zm_p} = \frac{2m_p}{m_e} \simeq 4000$$

$$A\simeq 2Z, \quad M\simeq Am_p)$$

suite du calcul de la perte d'énergie par unité de longueur (classique)



particule incidente traverse dx du milieu de densité d'e<sup>-</sup> n<sub>e</sub>, dans un élément de volume d<sup>3</sup>V

dans d<sup>3</sup>V:  $-d^3E = \Delta E(b) n_e d^3V$ 

 $d^{3}V = b \, db \, dx \, d\phi$ + intégration sur  $\phi \Rightarrow 2\pi$ 

$$\Rightarrow \quad -d^2E = \frac{4\pi z^2 e^4}{m_e v^2} n_e \frac{db}{b} dx$$

et 
$$n_e = N_A \rho / A_z$$

$$\Rightarrow -\frac{dE}{dx} = \frac{4\pi z^2 e^4 n_e}{m_e v^2} \ln \frac{b_{max}}{b_{min}}$$

 $\underline{estimation \ de \ b_{min}} : E_{cin} \ max \ de \ l'e^{\text{-}}$ 

$$v_e = rac{2m}{m_e + m} \stackrel{\text{si m} >> m_e}{v \simeq 2v}$$
 et donc  $E_{cin}^{max} = rac{1}{2} m_e (2v)^2 = 2m_e v^2$ 

 $\cap \text{ relativiste} : E_{cin}^{max} = 2m_e \gamma^2 v^2 \quad \text{et} \quad \Delta E = \frac{p^2}{2m_e} = \frac{2z^2 e^4}{m_e v^2 b^2} \quad \Rightarrow \quad b_{min} = \frac{ze^2}{\gamma m_e v^2}$ 

suite du calcul de la perte d'énergie par unité de longueur (classique)



<u>estimation de  $b_{max}$ </u> : e<sup>-</sup> pas vraiment libre

libre si le temps de l'interaction  $\tau \ll 1/\nu$  petit devant la période de révolution  $\Rightarrow$  estimation du temps de l'interaction [détail dans les notes]

$$\tau = \frac{b}{v \gamma} \qquad \Rightarrow \qquad b_{max} = \frac{v}{\langle \nu \rangle} \gamma$$

 $I = \hbar \langle \nu \rangle$  énergie d'ionisation liée à la fréquence moyenne de révolution orbitale doit être mesurée

# Perte d'E par ionisation

Formule de Bohr (semi-classique):

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e v^2} \frac{N_A \rho}{A} \left[ \ln \frac{m_e \gamma^2 v^3}{z e^2} \frac{1}{I^2} \right]$$

- bonne approximation pour les  $m >> m_{\rm e}$ 

- pas suffisant pour le proton, OK pour particule  $\alpha$ 

Meilleure approximation (1953): Formule de Bethe-Bloch

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \rho \frac{1}{\beta^2} \left[ \frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

 $K = 4\pi N_A r_e^2 m_e c^2$  $r_e = \frac{e^2}{m_e c^2}$  $T_{max} = 2m_e c^2 \beta^2 \gamma^2$ 

 $I = (10 \pm 1) \cdot Z \ eV$ 

PHYS-F305 - L. Favart - Chapitre V

$$= 0.307 \, MeV \, g^{-1} \, cm^2$$

le rayon classique de l'électron (= 2.8 fm)

l'énergie cinétique maximale transférée à l'électron, pour  $m \gg m_e$ pour les éléments de Z au delà de l'oxygène

#### Perte d'E par ionisation

Formule de Bethe-Bloch

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \rho \frac{1}{\beta^2} \left[ \frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

- correction  $\beta^2$ : relativiste due aux déformations du champ électrique  $E_y \rightarrow \gamma E_y$ 

- correction C/Z : tient compte des effets de liaison des électrons (pas immobiles) quand la vitesse orbitale n'est plus négligeable face à la vitesse incidente
- correction  $\delta/2$  : le champ électrique de la particule incidente polarise les atomes (effet Cherenkov)

$$\frac{\delta}{2} \rightarrow \ln \frac{\hbar \omega_p}{I} + \ln \beta \gamma - \frac{1}{2}$$
  $\omega_p = \sqrt{\rho e^2 / \pi m_e}$  fréq. de plasma des e

# Perte d'E par ionisation



Minimum ionizing particles (MIP):  $\beta \gamma = 3-4$ 

dE/dx falls ~  $\beta^{-2}$ ; kinematic factor [precise dependence: ~  $\beta^{-5/3}$ ]

dE/dx rises ~  $\ln (\beta \gamma)^2$ ; relativistic rise [rel. extension of transversal E-field]

Saturation at large  $(\beta\gamma)$  due to density effect (correction  $\delta$ ) [polarization of medium]

Units: MeV g<sup>-1</sup> cm<sup>2</sup>

MIP looses ~ 13 MeV/cm [density of copper: 8.94 g/cm<sup>3</sup>]

# Effet Cherenkov

la dépolarisation entraı̂ne l'émission d'un rayonnement en chaque point de la trajectoire. Emissions en phase si v > c/n (n indice de réfraction).





PHYS-F305 - L. Favart - Chapitre V

# Mesure dE/dx: moyen d'identification



# Parcours moyen - Pic de Bragg



# Perte d'E par ionisation pour les e+/e-

petite masse  $\rightarrow$ 

- même à petite impulsion, effets relativistes importants : rayonnement de freinage
- énergie perdue dans l'interaction n'est plus négligeable

$$\left. \frac{dE}{dx} \right|_{tot} = \left. \frac{dE}{dx} \right|_{ion} + \left. \frac{dE}{dx} \right|_{brem}$$

Ionisation

$$-\frac{dE}{dx}\Big|_{ion} = K \frac{Z}{A\beta^2} \left[ \ln \frac{m_e c^2 \beta^2 \gamma^2 T_e^{max}}{2I^2} + F(\gamma) \right] \qquad \begin{array}{l} F(\gamma) \text{ diffère pour les} \\ \text{électrons et les positons} \end{array} \right] \\ T_e^{max} = m_e c^2 (\gamma - 1)/2 \end{array}$$

Bremsstrahlung (rayonnement de freinage)

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ \ln\frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^2}$$



Bremsstrahlung

même origine que le rayonnement synchrotron mais ici dans le champs EM de la matière



PHYS-F305 - L. Favart - Chapitre V

# La longueur de radiation

à grand  $\beta\gamma$ , dE/dx est linéaire en E  $\rightarrow$ 

 $-\frac{dE}{dx} = \frac{E}{X_0}$  X0 est la longueur de radiation

$$\rightarrow$$
  $E(x) = E_0 e^{-x/X_0}$ 

X0 représente donc le parcours moyen d'un électron avant qu'il ne perde une fraction 1/e de son énergie par rayonnement de freinage

# Perte d'E pour les muons



rayonnement de freinage est réduit d'un facteur  $(m_{\mu}/m_e)^2 \approx (206)^2 \approx 43000$ et ne devient dominant qu'au-delà de 100 GeV

# Interactions des photons



# Interactions des photons



diffusion Rayleigh. Quand  $E_{\gamma} \rightarrow 0$  on ne peut plus considérer que les électrons sont libres et au repos. Le photon interagit alors avec le système électronique global de l'atome.

# Effet photoélectrique



La section efficace est approchée différemment suivant l'énergie du photon :

$$\sigma_{pe} = \frac{8\pi r_e^2}{3} \alpha^4 Z^5 2^{(5/2)} \left(\frac{m_e c^2}{E_\gamma}\right)^{3.5} \qquad \text{pour} \qquad E_{liaison} \ll E_\gamma \ll m_e c^2$$
$$\sigma_{pe} = 2\pi \alpha^4 r_e^2 Z^5 \frac{m_e c^2}{E_\gamma} \qquad \text{pour} \qquad E_\gamma \gg m_e c^2$$



chaque couche donne une contribution à la section efficace totale

# Effet Compton

Arthur Compton (1922) mesure les longueurs d'onde des rayonnements incident et "diffusé" :

 $\rightarrow$  pas un spectre de longueur d'onde continu mais :

$$\lambda_1 - \lambda_0 = \frac{h}{E_{\gamma'}} - \frac{h}{E_{\gamma}} = \frac{h}{m_e c^2} (1 - \cos \theta) \le \frac{2h}{m_e c^2}$$

- ne dépend pas du nombre atomique du diffuseur
- ne dépend pas de la longueur d'onde de l'onde incidente
- l'énergie et la quantité de mvt perdue par le photon se retrouvent dans un seul électron

$$\rightarrow \qquad E_{\gamma'} = E_{\gamma} \frac{1}{1 + \frac{E_{\gamma}(1 - \cos\theta)}{m_e c^2}}$$

La section efficace est approchée de deux façons suivant l'énergie du photon :

$$\sigma_c = \frac{8\pi}{3r_e^2} \left( 1 - \frac{2E_{\gamma}}{m_e c^2} \right) \qquad \text{pour} \qquad E_{\gamma} \ll m_e c^2$$
$$\sigma_c = \pi r_e^2 \frac{m_e c^2}{E_{\gamma}} \left( \ln \frac{2E_{\gamma}}{m_e c^2} + \frac{1}{2} \right) \qquad \text{pour} \qquad E_{\gamma} \gg m_e c^2$$







#### La création de paires

création de nouvelles particules  $\rightarrow$  seuil en énergie

$$E_{\gamma} \ge 2m_e \ c^2 \simeq 1MeV$$

$$\sigma_{paire} = \frac{7}{9} \left( 4\alpha r_e^2 Z^2 \ln \frac{2E_{\gamma}}{m_e c^2} - \frac{218}{21} \right)$$
$$\sigma_{paire} = \frac{7}{9} \left( \underbrace{4\alpha r_e^2 Z^2 \ln \frac{183}{Z^{1/3}} - \frac{2}{21}}_{A/N_A X_0} \right)$$

on constate la relation entre la longueur de

conversion ( $C_0$ ) et la longueur de radiation ( $X_0$ )

 $\gamma$ 

pour

 $2m_e c^2 < E_{\gamma} < \frac{m_e c^2}{2\alpha} Z^{1/3}$ 

pour

constante







# Interactions EM : photon

Zones de prépondérance des 3 processus d'interaction des photons avec la matière, dans le plan Z-Eγ



Au-delà de 20-30 MeV, c'est le processus de création de paires qui domine.

$$\sigma_{tot} = \sigma_{pe} + \sigma_c + \sigma_{paire}$$
  

$$\mu = \mu_{pe} + \mu_c + \mu_{paire}$$
  
pù  $\mu_i = n\sigma_i = \frac{N_A \rho}{A} \sigma_i$ 



<code>PHYS-F305</code> - L. Favart - Chapitre V

# Résumé



# 3. Interactions fortes



#### Longeur de collision nucléaire

$$\mathrm{d}N(x) = -N(x)\,n\,\sigma_{tot}\,\mathrm{d}x$$

$$\Rightarrow N(x) = N_0 e^{-xn\sigma_{tot}}$$

longueur de collision nucléaire  $\lambda_T$  définie par :

$$\lambda_T = \frac{1}{n \, \sigma_{tot}} \qquad [g/cm^2]$$

longueur d'absorption nucléaire  $\lambda_a$ 

$$\lambda_a = \frac{1}{n \, \sigma_{in\acute{e}lastique}} \qquad [g/cm^2]$$



PHYS-F305 - L. Favart - Chapitre V



NB:  $[g \text{ cm}^{-2}] / \rho [g/\text{cm}^{-3}] \rightarrow [\text{cm}]$ 

Voir « Particle physics booklet »

| Material                           | Z | Α                | $\langle Z/A \rangle$ | Nucl.coll.         | Nucl.inter.          | Rad.len.             | $dE/dx _{min}$       | n Density          |
|------------------------------------|---|------------------|-----------------------|--------------------|----------------------|----------------------|----------------------|--------------------|
|                                    |   |                  |                       | length $\lambda_T$ | length $\lambda_I$   | $X_0$                | { MeV                | $\{g \ cm^{-3}\}$  |
|                                    |   |                  |                       | $\{g \ cm^{-2}\}$  | $\{\rm g\ cm^{-2}\}$ | $\{\rm g\ cm^{-2}\}$ | $\rm g^{-1} cm^2 \}$ | $(\{g\ell^{-1}\})$ |
| H <sub>2</sub>                     | 1 | 1.00794(7)       | 0.99212               | 42.8               | 52.0                 | 63.04                | (4.103)              | 0.071(0.084)       |
| $D_2$                              | 1 | 2.01410177803(8) | 0.49650               | 51.3               | 71.8                 | 125.97               | (2.053)              | 0.169(0.168)       |
| He                                 | 2 | 4.002602(2)      | 0.49967               | 51.8               | 71.0                 | 94.32                | (1.937)              | 0.125(0.166)       |
| Li                                 | 3 | 6.941(2)         | 0.43221               | 52.2               | 71.3                 | 82.78                | 1.639                | 0.534              |
| Be                                 | 4 | 9.012182(3)      | 0.44384               | 55.3               | 77.8                 | 65.19                | 1.595                | 1.848              |
| C diamond                          | 6 | 12.0107(8)       | 0.49955               | 59.2               | 85.8                 | 42.70                | 1.725                | 3.520              |
| C graphite                         | 6 | 12.0107(8)       | 0.49955               | 59.2               | 85.8                 | 42.70                | 1.742                | 2.210              |
| N <sub>2</sub>                     | 7 | 14.0067(2)       | 0.49976               | 61.1               | 89.7                 | 37.99                | (1.825)              | 0.807(1.165)       |
| $O_2$                              | 8 | 15.9994(3)       | 0.50002               | 61.3               | 90.2                 | 34.24                | (1.801)              | 1.141(1.332)       |
| Air (dry, 1 atm)                   |   | 0.49919          | 61.3                  | 90.1               | 36.62                | (1.815)              | (1.205)              |                    |
| Shielding concrete 0               |   |                  | 0.50274               | 65.1               | 97.5                 | 26.57                | 1.711                | 2.300              |
| Borosilicate glass (Pyrex) 0.49707 |   |                  | 0.49707               | 64.6               | 96.5                 | 28.17                | 1.696                | 2.230              |
| Lead glass                         |   |                  | 0.42101               | 95.9               | 158.0                | 7.87                 | 1.255                | 6.220              |
| Standard rock                      |   |                  | 0.50000               | 66.8               | 101.3                | 26.54                | 1.688                | 2.650              |
|                                    |   |                  |                       | •                  |                      |                      |                      |                    |
| e-                                 |   |                  | -                     | air                |                      |                      |                      |                    |



PHYS-F305 - L. Favart - Chapitre V